Skip to main content
Log in

Calculation of Concentration and Electrostatic Potential Profiles at Liquid-Membrane/Water and Liquid/Liquid Interfaces

  • Notes
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A method based on statistical thermodynamics has been used to describe concentration distributions of neutral and charged molecules in the vicinity of liquid-liquid or polymer membrane-liquid interfaces. The model is outlined and various applications are shown. One of these is a study of the transition region at the interface of two immiscible liquids. The results show that this transition is not sharp. The width of the interfacial region (where the concentration varies gradually) depends on the mutual solubility of the two liquids and on the size of the molecules. In another application the potential drop across the interfacial region has been calculated as a function of composition of the bulk phases. This type of calculation allowed the numerical simulation of the potentiometric behavior of a recently developed ion-selective electrode which employs negatively charged ion carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. I. Kharkats and A. G. Volkov, J. Electroanal. Chem., 184, 435 (1985).

    Article  CAS  Google Scholar 

  2. H. H. J. Girault and D. J. Schiffrin, in “Electroanalytical Chemistry”, ed. A. J. Bard, p. 1, M. Dekker, New York, 1989.

  3. A. V. Indenbom, Electrochim. Acta, 40, 2985 (1995).

    Article  CAS  Google Scholar 

  4. I. Benjamin, J. Chem. Phys., 97, 2 (1992).

    Article  Google Scholar 

  5. I. Benjamin, Science [Washington, D. C.], 261, 1558 (1993).

    Article  CAS  Google Scholar 

  6. J. Stafiej, J. Electroanal. Chem., 351, 1 (1993).

    Article  CAS  Google Scholar 

  7. D. Michel and I. Benjamin, J. Phys. Chem., 99, 1530 (1995).

    Article  Google Scholar 

  8. J. M. H. M. Scheutjens and G. Fleer, J. Phys. Chem., 83, 1619 (1979).

    Article  CAS  Google Scholar 

  9. F. A. M. Leermakers, J. M. H. M. Scheutjens and J. Lyklema, Biophys. Chem., 18, 353 (1983).

    Article  CAS  Google Scholar 

  10. P. A. Barneveld, Ph. D. Thesis, Wageningen, 1991.

  11. P. J. Flory, “Principles of Polymer Chemistry”, Cornell University Press, 1971.

    Google Scholar 

  12. O. A. Evers, J. M. H. M. Scheutjens and G. J. Fleer, Macro-molecules, 23, 5221 (1990).

    Article  CAS  Google Scholar 

  13. P. J. Flory, “Principles of Polymer Chemistry”, Cornell University Press, 1971.

    Google Scholar 

  14. S. A. Safran, “Statistical Thermodynamics of Surfaces, Interfaces and Membranes”, Addison-Wesley Publishing Company, 1994.

    Google Scholar 

  15. A. Vincze, G. Horvai, F. A. M. Leermakers and J. M. H. M. Scheutjens, Sensors and Actuators, B18-19, 42 (1994).

    Article  Google Scholar 

  16. A. Vincze, G. Horvai, F. A. M. Leermakers, J. Phys. Chem., 100, 8946 (1996).

    Article  CAS  Google Scholar 

  17. A. Vincze, G. Horvai and F. A. M. Leermakers, Electro-analysis, 7, 877 (1995).

    Article  CAS  Google Scholar 

  18. U. Schaller, E. Bakker, U. E. Spichiger and E. Pretsch, Anal. Chem., 66, 391 (1994).

    Article  CAS  Google Scholar 

  19. A. Vincze, G. Horvai and F. A. M. Leermakers, Proceedings of ANTEC 96, 2152.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincze, A., Horvai, G. & Leermakers, F.A.M. Calculation of Concentration and Electrostatic Potential Profiles at Liquid-Membrane/Water and Liquid/Liquid Interfaces. ANAL. SCI. 14, 137–140 (1998). https://doi.org/10.2116/analsci.14.137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.14.137

Keywords

Navigation