Skip to main content
Log in

Remarks on the balanced metric on Hartogs triangles with integral exponent

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

In this paper we study the balanced metrics on some Hartogs triangles of exponent γ ∈ ℤ+, i.e. equipped with a natural Kähler form with where μ = (μ1, …, μn), μi > 0, depending on n parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for (Ωn(γ),g(μ)) and we prove that g(μ) is balanced if and only if μ1 > 1 and γμ1 is an integer, μi are integers such that μi ≽ 2 for all i = 2, …, n − 1, and μn > 1. Second, we prove that g(μ) is Kähler-Einstein if and only if μ1 = μ2 = … = μn = 2λ, where λ is a nonzero constant. Finally, we show that if g(μ) is balanced then (Ωn(γ),g(μ)) admits a Berezin-Engliš quantization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C. Arezzo, A. Loi: Moment maps, scalar curvature and quantization of Kähler manifolds. Commun. Math. Phys. 246 (2004), 543–559.

    Article  MATH  Google Scholar 

  2. E. Bi, Z. Feng, Z. Tu: Balanced metrics on the Fock-Bargmann-Hartogs domains. Ann. Global Anal. Geom. 49 (2016), 349–359.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Bi, Z. Hou: Canonical metrics on generalized Hartogs triangles. C. R., Math., Acad. Sci. Paris 360 (2022), 305–313.

    MathSciNet  MATH  Google Scholar 

  4. E. Bi, G. Su: Balanced metrics and Berezin quantization on Hartogs triangles. Ann. Mat. Pura Appl. (4) 200 (2021), 273–285.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Bommier-Hato, M. Engliš, E.-H. Youssfi: Radial balanced metrics on the unit ball of the Kepler manifold. J. Math. Anal. Appl. 475 (2019), 736–754.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Catlin: The Bergman kernel and a theorem of Tian. Analysis and Geometry in Several Complex Variables. Trends in Mathematics. Birkhäuser, Boston, 1999, pp. 1–23.

    MATH  Google Scholar 

  7. S.-Y. Cheng, S.-T. Yau: On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation. Commun. Pure Appl. Math. 33 (1980), 507–544.

    Article  MATH  Google Scholar 

  8. J. P. D’Angelo: An explicit computation of the Bergman kernel function. J. Geom. Anal. 4 (1994), 23–34.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. K. Donaldson: Scalar curvature and projective embeddings. I. J. Differ. Geom. 59 (2001), 479–522.

    MathSciNet  MATH  Google Scholar 

  10. M. Engliš: Berezin quantization and reproducing kernels on complex domains. Trans. Am. Math. Soc. 348 (1996), 411–479.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Engliš: The asymptotics of a Laplace integral on a Kähler manifold. J. Reine Angew. Math. 528 (2000), 1–39.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Engliš: Weighted Bergman kernels and balanced metrics. RIMS Kokyuroku 1487 (2006), 40–54.

    Google Scholar 

  13. Z. Feng, Z. Tu: Balanced metrics on some Hartogs type domains over bounded symmetric domains. Ann. Global Anal. Geom. 47 (2015), 305–333.

    Article  MathSciNet  MATH  Google Scholar 

  14. Z. Hou, E. Bi: Remarks on regular quantization and holomorphic isometric immersions on Hartogs triangles. Arch. Math. 118 (2022), 605–614.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Loi, M. Zedda: Balanced metrics on Hartogs domains. Abh. Math. Semin. Univ. Hamb. 81 (2011), 69–77.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Loi, M. Zedda: Balanced metrics on Cartan and Cartan-Hartogs domains. Math. Z. 270 (2012), 1077–1087.

    Article  MathSciNet  MATH  Google Scholar 

  17. X. Ma, G. Marinescu: Generalized Bergman kernels on symplectic manifolds. Adv. Math. 217 (2008), 1756–1815.

    Article  MathSciNet  MATH  Google Scholar 

  18. X. Ma, G. Marinescu: Berezin-Toeplitz quantization on Kähler manifolds. J. Reine Angew. Math. 662 (2012), 1–56.

    MathSciNet  MATH  Google Scholar 

  19. H. Yang, E. Bi: Remarks on Rawnsley’s ε-function on the Fock-Bargmann-Hartogs domains. Arch. Math. 112 (2019), 417–427.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Zedda: Canonical metrics on Cartan-Hartogs domains. Int. J. Geom. Methods Mod. Phys. 9 (2012), Article ID 1250011, 13 pages.

  21. M. Zedda: Berezin-Engliš’ quantization of Cartan-Hartogs domains. J. Geom. Phys. 100 (2016), 62–67.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Zelditch: Szegö kernels and a theorem of Tian. Int. Math. Res. Not. 1998 (1998), 317–331.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We sincerely thank the referees, who have read the paper very carefully and made many useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Yang, H. Remarks on the balanced metric on Hartogs triangles with integral exponent. Czech Math J 73, 633–647 (2023). https://doi.org/10.21136/CMJ.2023.0208-22

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2023.0208-22

Keywords

MSC 2020

Navigation