Skip to main content
Log in

An explicit computation of the Bergman kernel function

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We give an explicit computation of the Bergman kernel function on the domain

$$||z||^2 + ||w||^{2p}< 1$$

contained in complex Euclidean space of dimensionn +m. Herep is any positive number. We obtain the exact formula

$$K((z,w), (\overline {z,w)} ) = \sum\limits_{k = 0}^{n + 1} {^c k\frac{{(1 - ||z||^2 )^{ - n - 1 + \frac{k}{p}} }}{{((1 - ||z||^2 )^{\frac{1}{p}} - ||w||^2 )^{m + k} }}.} $$

The constants ck depend onk, n, m, p and we compute them. Writing\(d_{k + 1} = \pi ^{n + m} p^n \frac{{^c k + 1}}{{\Gamma (m + k + 1)}}\) we obtain the formula

$$\prod\limits_{l = 0}^n {(y + pl)} = \sum\limits_{k = - 1}^n {d_{k + 1} } \prod\limits_{l = 0}^k {(y + l)} $$

and determined j by evaluating the parametery at the negative integers. For example

$$d_1 = - \prod\limits_{l = 0}^n {(pl - 1)} = \prod\limits_{l = 1}^n {(pl - 1) and } d_2 = \frac{1}{2}\prod\limits_{l = 0}^n {(pl - 2)} - \prod\limits_{l = 0}^n {(pl - 1)} .$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D’Angelo, John P. A note on the Bergman kernel.Duke Math J. 45(2), 259–266 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  2. D’Angelo, John P.Several Complex Variables and the Geometry of Real Hypersurfaces. CRC Press, Boca Raton, 1992.

    Google Scholar 

  3. Derridj, M., and Tartakoff, D. Local analyticity for the\(\bar \partial - Neumann\) problem and □b-Some model domains without maximal estimates.Duke Math J. 64, 377–402 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  4. Diederich, K., and Herbort, G. Geometric and analytic boundary invariants on pseudoconvex domains. Comparison results, preprint.

  5. Fefferman, C. The Bergman kernel and biholomorphic mappings of strictly pseudoconvex domains.Invent. Math. 26, 1–65 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  6. Greene, R. E., and Krantz, S. G. Techniques for studying automorphisms of weakly pseudoconvex domains. InSeveral Complex Variables: Proceedings of the Mittag-Leffler Institute 1987–1988, J. Fornaess, ed., pp. 389–409. Princeton University Press, Princeton, 1992.

    Google Scholar 

  7. Greene, R. E., and Krantz, S. G. Deformation of complex structures, estimates for the\(\bar \partial - equation\), and stability of the Bergman kernel.Adv. Math. 43, 1–86 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  8. Herbort, G. The growth of the Bergman kernel on pseudoconvex domains of homogeneous finite diagonal type.Nagoya Math J. 126, 1–24 (1992).

    MathSciNet  MATH  Google Scholar 

  9. Kim, K. T. Asymptotic behavior of the curvature of the Bergman metric of the thin domains.Pacific J. Math. 155, 99–110 (1992).

    MathSciNet  Google Scholar 

  10. Kim, K. T., and Yu, J. Limiting behavior of the Bergman curvature near the C2 strongly pseudoconvex points. Preprint.

  11. McNeal, J. D. Lower bounds on the Bergman metric near a point of finite type.Annals of Math. 136, 339–360 (1992).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Angelo, J.P. An explicit computation of the Bergman kernel function. J Geom Anal 4, 23–34 (1994). https://doi.org/10.1007/BF02921591

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921591

Math Subject Classification

Key Words and Phrases

Navigation