Skip to main content
Log in

Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider the Keller-Segel-Navier-Stokes system

$$\left\{ {\begin{array}{*{20}{c}} {{n_t} + {\bf{u}} \cdot \nabla n = \Delta n - \nabla \cdot (n\nabla v),\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}&{x \in \Omega ,\;t > 0,} \\ {{v_t} + {\bf{u}} \cdot \nabla v = \Delta v - v + w,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}&{x \in \Omega ,\;t > 0,} \\ {{w_t} + {\bf{u}} \cdot \nabla w = \Delta w - w + n,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}&{x \in \Omega ,\;t > 0,} \\ {{{\bf{u}}_t} + ({\bf{u}} \cdot \nabla ){\bf{u}} = \Delta {\bf{u}} + \nabla P + n\nabla \phi ,\;\nabla \cdot {\bf{u}} = 0,}&{x \in \Omega ,\;t > 0,} \end{array}} \right.$$

which is considered in bounded domain Ω ⊂ ℝN (N ∈ {2, 3}) with smooth boundary, where \(\phi \in {C^{1 + \delta }}\left( {\overline \Omega } \right)\) with δ ∈ (0, 1). We show that if the initial data \({\left\| {{n_0}} \right\|_{{L^{N/2}}\left( \Omega \right)}}\), \({\left\| {\nabla {v_0}} \right\|_{{L^N}\left( \Omega \right)}}\), \({\left\| {\nabla {w_0}} \right\|_{{L^N}\left( \Omega \right)}}\) and \({\left\| {{{\bf{u}}_0}} \right\|_{{L^N}\left( \Omega \right)}}\) is small enough, an associated initial-boundary value problem possesses a global classical solution which decays to the constant state (\({\bar n_0},{\bar n_0},{\bar n_0},0\)) exponentially with \({\bar n_0}: = \left( {1/\left| \Omega \right|} \right)\int_\Omega {{n_0}\left( x \right){\rm{d}}x} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25 (2015) 1663–1763.

    Article  MATH  Google Scholar 

  2. X. Cao: Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. 35 (2015) 1891–1904.

    Article  MATH  Google Scholar 

  3. X. Cao, J. Lankeit: Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differ. Equ. 55 (2016) Article ID 107, 39 pages.

  4. L. Corrias, B. Perthame: Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces. Math. Comput. Modelling 47 (2008) 755–764.

    Article  MATH  Google Scholar 

  5. E. Espejo, T. Suzuki: Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal., Real World Appl. 21 (2015) 110–126.

    Article  MATH  Google Scholar 

  6. K. Fujie, T. Senba: Application of an Adams type inequality to a two-chemical substances chemotaxis system. J. Differ. Equations 263 (2017) 88–148.

    Article  MATH  Google Scholar 

  7. K. Fujie, T. Senba: Blowup of solutions to a two-chemical substances chemotaxis system in the critical dimension. J. Differ. Equations 266 (2019) 942–976.

    Article  MATH  Google Scholar 

  8. T. Hillen, K. J. Painter: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58 (2009) 183–217.

    Article  MATH  Google Scholar 

  9. D. Horstmann: From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Dtsch. Math.-Ver. 105 (2003) 103–165.

    MATH  Google Scholar 

  10. H.-Y. Jin: Boundedness of the attraction-repulsion Keller-Segel system. J. Math. Anal. Appl. 422 (2015) 1463–1478.

    Article  MATH  Google Scholar 

  11. X. Li, Y. Xiao: Global existence and boundedness in a 2D Keller-Segel-Stokes system. Nonlinear Anal., Real World Appl. 37 (2017) 14–30.

    Article  MATH  Google Scholar 

  12. J. Liu, Y. Wang: Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equations 262 (2017) 5271–5305.

    Article  MATH  Google Scholar 

  13. M. Luca, A. Chavez-Ross, L. Edelstein-Keshet, A. Mogilner: Chemotactic signaling, microglia, and Alzheimer’s disease senile plagues: Is there a connection? Bull. Math. Biol. 65 (2003) 693–730.

    Article  MATH  Google Scholar 

  14. T. Nagai, T. Senba, K. Yoshida: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj, Ser. Int. 40 (1997) 411–433.

    MATH  Google Scholar 

  15. K. Osaki, A. Yagi: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkc. Ekvacioj, Ser. Int. 44 (2001) 441–469.

    MATH  Google Scholar 

  16. Y. Tao, Z.-A. Wang: Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23 (2013) 1–36.

    Article  MATH  Google Scholar 

  17. Y. Tao, M. Winkler: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66 (2015) 2555–2573.

    Article  MATH  Google Scholar 

  18. Y. Tao, M. Winkler: Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system. Z. Angew. Math. Phys. 67 (2016) Article ID 138, 23 pages.

  19. Y. Wang: Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with subcritical sensitivity. Math. Models Methods Appl. Sci. 27 (2017) 2745–2780.

    Article  MATH  Google Scholar 

  20. Y. Wang, M. Winkler, Z. Xiang: Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 18 (2018) 421–466.

    MATH  Google Scholar 

  21. Y. Wang, L. Yang: Boundedness in a chemotaxis-fluid system involving a saturated sensitivity and indirect signal production mechanism. J. Differ. Equations 287 (2021) 460–490.

    Article  MATH  Google Scholar 

  22. M. Winkler: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equations 248 (2010) 2889–2905.

    Article  MATH  Google Scholar 

  23. M. Winkler: Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equations 37 (2012) 319–351.

    Article  MATH  Google Scholar 

  24. M. Winkler: A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization. J. Funct. Anal. 276 (2019) 1339–1401.

    Article  MATH  Google Scholar 

  25. M. Winkler: Small-mass solutions in the two-dimensional Keller-Segel system coupled to Navier-Stokes equations. SIAM J. Math. Anal. 52 (2020) 2041–2080.

    Article  MATH  Google Scholar 

  26. M. Winkler: Reaction-driven relaxation in three-dimensional Keller-Segel-Navier-Stokes interaction. Commun. Math. Phys. 389 (2022) 439–489.

    Article  MATH  Google Scholar 

  27. H. Yu, W. Wang, S. Zheng: Global classical solutions to the Keller-Segel-Navier-Stokes system with matrix-valued sensitivity. J. Math. Anal. Appl. 461 (2018) 1748–1770.

    Article  MATH  Google Scholar 

  28. P. Yu: Blow-up prevention by saturated chemotactic sensitivity in a 2D Keller-Segel-Stokes system. Acta Appl. Math. 169 (2020) 475–497.

    Article  MATH  Google Scholar 

  29. W. Zhang, P. Niu, S. Liu: Large time behavior in a chemotaxis model with logistic growth and indirect signal production. Nonlinear Anal., Real World Appl. 50 (2019) 484–497.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibo Hou.

Additional information

Zhibo Hou was supported by the Nature Science Fund of Sichuan Education Department (Grant No. 17za0357) and the Key Scientific Research Fund of Xihua University (Grant No. Z1412619).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Liu, X. & Hou, Z. Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production. Czech Math J 73, 49–70 (2023). https://doi.org/10.21136/CMJ.2022.0399-21

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2022.0399-21

Keywords

MSC 2020

Navigation