Skip to main content
Log in

A Recovery-Based a Posteriori Error Estimator for the Generalized Stokes Problem

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

A recovery-based a posteriori error estimator for the generalized Stokes problem is established based on the stabilized P1P0 (linear/constant) finite element method. The reliability and efficiency of the error estimator are shown. Through theoretical analysis and numerical tests, it is revealed that the estimator is useful and efficient for the generalized Stokes problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Araya, G. R. Barrenechea, A. Poza: An adaptive stabilized finite element method for the generalized Stokes problem. J. Comput. Appl. Math. 214 (2008), 457–479.

    Article  MathSciNet  Google Scholar 

  2. I. Babuška, W. C. Rheinboldt: A-posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12 (1978), 1597–1615.

    Article  Google Scholar 

  3. R. E. Bank, B. D. Welfert: A comparison between the mini-element and the Petrov-Galerkin formulations for the generalized Stokes problem. Comput. Methods Appl. Mech. Eng. 83 (1990), 61–68.

    Article  MathSciNet  Google Scholar 

  4. G. R. Barrenechea, F. Valentin: An unusual stabilized finite element method for a generalized Stokes problem. Numer. Math. 92 (2002), 653–677.

    Article  MathSciNet  Google Scholar 

  5. T. P. Barrios, R. Bustinza, G. C. García, E. Hernández: On stabilized mixed methods for generalized Stokes problem based on the velocity-pseudostress formulation: A priori error estimates. Comput. Methods Appl. Mech. Eng. 237–240 (2012), 78–87.

    Article  MathSciNet  Google Scholar 

  6. C. Bernardi, R. Verfürth: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000), 579–608.

    Article  MathSciNet  Google Scholar 

  7. P. B. Bochev, C. R. Dohrmann, M. D. Gunzburger: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44 (2006), 82–101.

    Article  MathSciNet  Google Scholar 

  8. E. Burman, P. Hansbo: Edge stabilization for the generalized Stokes problem: A continuous interior penalty method. Comput. Methods Appl. Mech. Eng. 195 (2006), 2393–2410.

    Article  MathSciNet  Google Scholar 

  9. R. Bustinza, G. N. Gatica, M. González: A mixed finite element method for the generalized Stokes problem. Int. J. Numer. Methods Fluids 49 (2005), 877–903.

    Article  MathSciNet  Google Scholar 

  10. C. Carstensen: Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis. ZAMM, Z. Angew. Math. Mech. 84 (2004), 3–21.

    Article  MathSciNet  Google Scholar 

  11. C. Carstensen, S. A. Funken: A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems. Math. Comput. 70 (2001), 1353–1381.

    Article  MathSciNet  Google Scholar 

  12. C. Carstensen, R. Verfürth: Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36 (1999), 1571–1587.

    Article  MathSciNet  Google Scholar 

  13. S. H. Chou: Analysis and convergence of a covolume method for the generalized Stokes problem. Math. Comput. 66 (1997), 85–104.

    Article  MathSciNet  Google Scholar 

  14. Q. Deng, X. Feng: Multigrid methods for the generalized Stokes equations based on mixed finite element methods. J. Comput. Math. 20 (2002), 129–152.

    MathSciNet  MATH  Google Scholar 

  15. H.-Y. Duan, P.-W. Hsieh, R. C. E. Tan, S.-Y. Yang: Analysis of the small viscosity and large reaction coefficient in the computation of the generalized Stokes problem by a novel stabilized finite element method. Comput. Methods Appl. Mech. Eng. 271 (2014), 23–47.

    Article  MathSciNet  Google Scholar 

  16. C. A. Duarte, J. T. Oden: An h-p adaptive method using clouds. Comput. Methods Appl. Mech. Eng. 139 (1996), 237–262.

    Article  MathSciNet  Google Scholar 

  17. Y. He, C. Xie, H. Zheng: A posteriori error estimate for stabilized low-order mixed FEM for the Stokes equations. Adv. Appl. Math. Mech. 2 (2010), 798–809.

    Article  MathSciNet  Google Scholar 

  18. P. Huang, Q. Zhang: A posteriori error estimates for the Stokes eigenvalue problem based on a recovery type estimator. Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 62 (2019), 295–304.

    MathSciNet  MATH  Google Scholar 

  19. D. Kay, D. Silvester: A posteriori error estimation for stabilized mixed approximations of the Stokes equations. SIAM J. Sci. Comput. 21 (1999), 1321–1336.

    Article  MathSciNet  Google Scholar 

  20. M. Larin, A. Reusken: A comparative study of efficient iterative solvers for generalized Stokes equations. Numer. Linear Algebra Appl. 15 (2008), 13–34.

    Article  MathSciNet  Google Scholar 

  21. K. Nafa, A. J. Wathen: Local projection stabilized Galerkin approximations for the generalized Stokes problem. Comput. Methods Appl. Mech. Eng. 198 (2009), 877–883.

    Article  MathSciNet  Google Scholar 

  22. S. Repin, R. Stenberg: A posteriori error estimates for the generalized Stokes problem. J. Math. Sci., New York 142 (2007), 1828–1843; translation from Probl. Mat. Anal. 34 (2006), 89–101.

    Article  MathSciNet  Google Scholar 

  23. R. Rodríguez: Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Differ. Equations 10 (1994), 625–635.

    Article  MathSciNet  Google Scholar 

  24. L. Song, Y. Hou, Z. Cai: Recovery-based error estimator for stabilized finite element methods for the Stokes equation. Comput. Methods Appl. Mech. Eng. 272 (2014), 1–16.

    Article  MathSciNet  Google Scholar 

  25. R. Verfürth: A posteriori error estimators for the Stokes equations. Numer. Math. 55 (1989), 309–325.

    Article  MathSciNet  Google Scholar 

  26. R. Verfürth: A posteriori error estimates for nonlinear problems: Finite element discretizations of elliptic equations. Math. Comput. 62 (1994), 445–475.

    Article  MathSciNet  Google Scholar 

  27. R. Verfürth: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series Advances in Numerical Mathematics, Wiley, Chichester; Teubner, Stuttgart, 1996.

    MATH  Google Scholar 

  28. Z. Wang, Z. Chen, J. Li: A stabilized nonconforming quadrilateral finite element method for the generalized Stokes equations. Int. J. Numer. Anal. Model. 9 (2012), 449–457.

    MathSciNet  MATH  Google Scholar 

  29. J. Wang, Y. Wang, X. Ye: A posteriori error estimate for stabilized finite element methods for the Stokes equations. Int. J. Numer. Anal. Model. 9 (2012), 1–16.

    MathSciNet  MATH  Google Scholar 

  30. H. Zheng, Y. Hou, F. Shi: A posteriori error estimates of stabilization of low-order mixed finite elements for incompressible flow. SIAM J. Sci. Comput. 32 (2010), 1346–1360.

    Article  MathSciNet  Google Scholar 

  31. O. C. Zienkiewicz, J. Z. Zhu: The superconvergent patch recovery and a posteriori error estimates. I: The recovery technique. Int. J. Numer. Methods Eng. 33 (1992), 1331–1364.

    Article  MathSciNet  Google Scholar 

  32. O. C. Zienkiewicz, J. Z. Zhu: Superconvergence and the superconvergent patch recovery. Finite Elem. Anal. Des. 19 (1995), 11–23.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and reviewers for their valuable comments and suggestions which helped us to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengzhan Huang.

Additional information

The research has been supported by the NSF of China (grant number 11861067).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Zhang, Q. A Recovery-Based a Posteriori Error Estimator for the Generalized Stokes Problem. Appl Math 65, 23–41 (2020). https://doi.org/10.21136/AM.2020.0319-18

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2020.0319-18

Keywords

MSC 2010

Navigation