Data sources
The statistics used for this analysis were drawn from official, aggregate COVID Alert server and app daily usage statistics provided by the Canadian Digital Service (Canadian Digital Service, n.d.). At the time of printing, this dataset has not yet been released publicly, though Health Canada has plans to do so. To learn about or request access to the data, email Health Canada at hc.AlerteCOVIDAlert.sc@canada.ca.
Although the app was fully deployed by December 2020, it was not until a February 2021 update that many of the statistics required for modeling uptake and impact could be collected. Thus, our analysis considers a time period beginning February 25, 2021.
Comparative assessment
To compare the uptake and usage of COVID Alert to similar apps deployed in other countries, we first sourced countries with apps from a Wikipedia list of 47 countries with official exposure notification apps (COVID-19 apps, n.d.). We conducted a search for reports related to app uptake and efficacy first using Google Scholar, then regular Google search results and news sources. We used a snowball search strategy, collecting articles and news stories referenced in sources already gathered. Non-government sources were of variable quality; the source and timeline of reported information were often unclear and there was little consistency between news reports. In an effort to preserve the quality of comparison, we thus prioritized sources with direct access to app data, either government data/reports or research reports from teams working with app data directly. Of the 47 regions (countries or states) with apps, we were able to find 8 with direct access sources: France (TousAntiCovid; France, 2021; Cédric, 2021), Germany (Corona-Warn-App; Hoerdt, 2021), Italy (Immuni; Presidenza del Consiglio dei Ministri, n.d.), the Netherlands (Corona Melder; Boncz, 2021), New Zealand (NZ COVID Tracker; Ministry of Health NZ, n.d.), Switzerland (SwissCovid; Salathé et al., 2020), the United Kingdom (NHS COVID-19 app; Wymant et al., 2021), and the United States’ Washington state (WA Notify; Segal et al., 2021).
We compared COVID Alert to the selected apps deployed in other countries or, in one case, the state of Washington in the USA along five metrics. To compare adoption and usage, we extracted: (1) app downloads, (2) active users, and (3) exposure notifications sent. To compare with the results of our modeling, we additionally extracted: (4) estimated cases averted and (5) estimated deaths averted. To facilitate fair comparisons, we considered these metrics by percentage of the regions’ population or by percentage of their total cases. Country populations and total cases were taken from Worldometer on July 27, 2021. The population and total case numbers for Washington state were drawn from the United States Census Bureau and the New York Times, respectively (Allen et al., n.d.; U.S. Census Bureau, n.d.).
Modeling
To assess the impact of COVID Alert on mitigating virus transmission, we estimated the number of COVID-19 cases averted in each province based on a modeling approach proposed by Wymant et al. (2021). In brief, these authors used an approach that models the number of cases averted due to notifications received on day t as the product of five terms: (i) the number of notifications received on day t, (ii) the secondary attack rate (SAR), which is the probability that someone who is notified will test positive, (iii) the expected fraction of transmissions preventable if an infectious individual strictly adheres to quarantine after receiving a notification, (iv) the quarantine effectiveness, and (v) the expected size of the full transmission chain that would originate from the contact if they had not been notified. Details of each of these quantities are provided in the Supplementary Appendix.
The COVID Alert app was rolled out at different dates in different provinces beginning in Ontario in July 2020. As mentioned earlier, as the statistics needed for modeling were only available as of February 25, 2021, our analysis considers the time period beginning on this date.
The process to obtain a one-time key to upload a positive COVID-19 test is different in each province and territory; thus, it is possible that some users do not ever receive a key. Furthermore, COVID-19 positive declaration is not mandatory and users who test positive have only 24 h to enter the key in the app. Therefore, the number of notifications received during the study period is an underestimate of the number of users who test positive. Due to the constraints of privacy preservation, the SAR, the expected fraction of transmissions prevented, and the quarantine effectiveness cannot be estimated from the available data. We consider instead a range of plausible values for these parameters that are based on the literature (see Wymant et al., 2021 and Segal et al., 2021). In particular, we consider SARs of 5% and 6%. Following the results in Ferretti et al. (2020), the generation time (i.e., the time from infection of the index case to the time of infection of the secondary case) is modeled by a Weibull distribution with an average generation time of 5.5 days. The fraction of transmissions prevented is estimated from the delay distribution using the generation time distribution assuming that the mean time from exposure to notification among those app users is 5.46 days (as in Segal et al., 2021); this correlates to approximately 50% of transmissions being prevented by receipt of exposure notifications. For the effectiveness of quarantine in reducing transmission, two plausible values, 45% and 65%, were used (Wymant et al., 2021; Segal et al., 2021).
The size of the transmission chain is a function of the number of cases during the study period. It describes the number of cases at time T that are caused by transmissions originating from the contact if not notified before time T. Here, we follow the assumptions of Wymant et al. (2021); specifically, it is assumed that local epidemics do not mix and that the extra cases do not affect the epidemic dynamic (i.e., the underlying epidemic growth rate does not change with the additional cases). We estimated the number of deaths averted by multiplying the number of cases averted by the province-specific crude case fatality rate, which was estimated for each province as the ratio of its total number of deaths due to the COVID-19 virus during the modeling time period to its total number of cases during the modeling time period. Note that these rates are a lower bound because the time delay from illness onset to death leads to right censoring; that is, the true number of deaths among those cases will be equal to or greater than the observed number at the end of the study because some people may die subsequent to the period of study.