Skip to main content
Log in

Mitigation of sulfate pollution by rewetting of fens — A conflict with restoring their phosphorus sink function?

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Sulfate pollution of lakes and rivers is recognized as a serious problem in many regions of Central Europe, thus we evaluated the role of rewetted fens in mitigating sulfate pollution and tested if high sulfate concentrations in fen-feeding water counteract the re-establishment of their function as sinks for phosphorus (P). A long-term incubation experiment was conducted with highly decomposed peat from upper soil layers of fens that have been rewetted for 1 to 15 years. Periodic sulfate pulses to inundated peat mesocosms, equating to an annual loading of 50 g S m−2, induced significant changes of sulfate consumption and phosphorus mobilization. Sulfate consumption of highly decomposed peat from all sampling sites was related to sulfate concentrations in overlying water (linear regression, p<0.01). Sulfate additions also led to significant increases of P concentrations or P mobilization in peat porewater (t test, p<0.05) and P concentrations in the overlying water were 2–3 times higher than in non-treated controls. In conclusion, rewetting of fens is an important tool to mitigate sulfate pollution of adjacent lakes and rivers. However, an elevated sulfate concentration in waters feeding the fen impairs P retention and increases P losses to adjacent surface waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aherne, J., T. Larssen, B. J. Cosby, and P. J. Dillon. 2006. Climate variability and forecasting surface water recovery from acidification: modeling drought-induced sulphate release from wetlands. Science of the Total Environment 365:186–99.

    Article  CAS  PubMed  Google Scholar 

  • Beltman, B., T. G. Rouwenhorst, M. B. van Kerkhov, T. van der Krift, and J. T. A. Verhoeven. 2000. Internal eutrophication in peat soils through competition between chloride and sulphate with phosphate for binding sites. Biogeochemistry 50:183–94.

    Article  CAS  Google Scholar 

  • Berg, P., N. Risgaard-Petersen, and S. Rysgaard. 1998. Interpretation of measured concentration profiles in sediment pore water. Limnology and Oceanography 43:1500–10.

    Article  CAS  Google Scholar 

  • Boström, B., J. M. Anderson, S. Fleischer, and M. Jansson. 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170:229–44.

    Google Scholar 

  • Bull, K. R., et al. (20 authors). 2001. Coordinated effects monitoring and modelling for developing and supporting international air pollution control agreements. Water, Air, and Soil Pollution 130:119–30.

    Article  CAS  Google Scholar 

  • Caraco, N. F., J. J. Cole, and G. E. Likens. 1993. Sulfate control of phosphorus availability in lakes — A test and re-evaluation of Hasler and Einsele’s Model. Hydrobiologia 253:275–80.

    Article  CAS  Google Scholar 

  • DIN 38406-32. German standard methods for the examination of water, waste water and sludge — cations (group E) — Part 32: Determination of iron by atomic absorption spectrometry (E 32), 49. Lieferung 2001.

  • EN ISO 10304-1. Water quality — Determination of dissolved fluoride, chloride, nitrite, orthophosphate, bromide, nitrate and sulfate ions, using liquid chromatography of ions — Part 1: Method for water with low contamination, 33. Lieferung 1995.

  • EN ISO 14911. Water quality — Determination of dissolved Li+, Na+, NH4 +, K+, Mn2 +, Ca2 +, Mg2 +, Sr2 + and Ba2 + using ion chromatography — Method for water and waste water, 48. Lieferung 2000.

  • Evans, H. E., P. J. Dillon, and L. A. Molot. 1997. The use of mass balance investigations in the study of the biogeochemical cycle of sulphur. Hydrological Processes 11:765–82.

    Article  Google Scholar 

  • Furrer, G. and B. Wehrli. 1996. Microbial reactions, chemical speciation, and multicomponent diffusion in porewaters of a eutrophic lake. Geochimica et Cosmochimica Acta 60:2333–46.

    Article  CAS  Google Scholar 

  • Gauci, V., D. Fowler, S. J. Chapman, and N. B. Dise. 2004. Sulfate deposition and temperature controls on methane emission and sulphur forms in peat. Biogeochemistry 71:141–62.

    Article  CAS  Google Scholar 

  • Gelbrecht, J., H.-J. Exner, S. Conradt, M. Rehfeld-Klein, and F. Sensel. 2002. Water chemistry. p. 74–85.In J. Köhler, J. Gelbrecht, and M. Pusch (eds.) Die Spree — Zustand, Probleme und Entwicklungsmöglichkeiten. Limnologie aktuell, Bd. 10, Schweizerbath, Stuttgart.

    Google Scholar 

  • Geurts, J. J. M., A. J. P Smolders, J. T. A. Verhoeven, J. G. M. Roelofs, and L. P. M. Lamers. 2008. Sediment Fe:PO4 ratio as a diagnostic and prognostic tool for the restoration of macrophyte biodiversity in fen waters. Freshwater Biology 53:2101–16.

    Article  CAS  Google Scholar 

  • Gunnars, A., S. Blomquist, P. Johansson, and C. Andersson. 2002. Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochimica et Cosmochimica Acta 66:745–58.

    Article  CAS  Google Scholar 

  • Heagle, D. J., M. Hayashi, and G. van der Kamp. 2007. Use of solute mass balance to quantify geochemical processes in a prairie recharge wetland. Wetlands 27:806–18.

    Article  Google Scholar 

  • Hines, M. E., S. L. Knollmeyer, and J. B. Tugel. 1989. Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh. Limnology and Oceanography 34:578–90.

    CAS  Google Scholar 

  • Holmer, M. and P. Storkholm. 2001. Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biology 46:431–51.

    Article  CAS  Google Scholar 

  • Hupfer, H. and J. Lewandowski. 2008. Oxygen controls the phosphorus release from lake sediments — a long-lasting paradigm in limnology. International Review of Hydrobiology 93:415–32.

    Article  CAS  Google Scholar 

  • Ingvorsen, K. and B. B. Jorgensen. 1984. Kinetics of sulfate uptake by freshwater and marine species ofDesulfovibrio. Archives of Microbiology 139:61–66.

    Article  CAS  Google Scholar 

  • Jensen, H. S., P. Kristensen, E. Jeppesen, and A. Skytthe. 1992. Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235/236:731–43.

    Article  Google Scholar 

  • Joosten, H. and D. Clarke. 2002. Wise use of mires and peatlands — background and principles including a framework for decision-making. International Mire Conservation Group. NHBS Ltd., Totnes, Finland,

    Google Scholar 

  • Kleeberg, A. 2003. Re-assessment of Wundsch’s (1940) ‘H2S-Oscillatoria-Lake’ type using the eutrophic Lake Scharmutzel (Brandenburg, NE Germany) as an example. Hydrobiologia 501:1–5.

    Article  Google Scholar 

  • Lamers, L. P. M., S. J. Falla, E. M. Samborska, I. A. R. van Dulken, G. van Hengstum, and J. G. M. Roelofs. 2002. Factors controlling the extent of eutrophication and toxicity in sulfatepolluted freshwater wetlands. Limnology and Oceanography 47:585–93.

    Article  CAS  Google Scholar 

  • Lucassen, E. C. H. E. T., A. J. P. Smolders, J. van de Crommenacker, and J. G. M. Roelofs. 2004. Effects of stagnating sulphate-rich groundwater on the mobility of phosphate in freshwater wetlands: a field experiment. Archiv für Hydrobiologie 160:117–31.

    Article  CAS  Google Scholar 

  • Lovley, D. R. and M. J. Klug. 1982. Intermediary metabolism of organic matter in the sediments of a eutrophic lake. Applied and Environmental Microbiology 43:552–60.

    CAS  PubMed  Google Scholar 

  • Lovley, D. R. and E. J. P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology 51: 683–89.

    CAS  PubMed  Google Scholar 

  • Murphy, J. and J. P. Riley. 1962. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta 27:31–36.

    Article  CAS  Google Scholar 

  • Neubauer, S. C., K. Gilver, S. K. Valentine, and J. P. Megonigal. 2005. Seasonal patterns and plant mediated controls of subsurface wetland biogeochemistry. Ecology 86:3334–44.

    Article  Google Scholar 

  • Ohle, W. 1938. Die Bedeutung der Austauschvorgänge zwischen Schlamm und Wasser fü r den Stoffwechsel der Gewässer. Vom Wasser 13:87–97.

    Google Scholar 

  • Okruszko, H. 1995. Influence of hydrological differentiation of fens on their transformation after dehydration and on possibilities for restoration. p. 113–19.In B. D. Wheeler, S. C. Shaw, W. J. Fojt, and R. A. Robertson (eds.) Restoration of Temperate Wetlands. Wiley, Chichester, UK.

    Google Scholar 

  • Parkhurst, D. L. and C. A. J. Appelo. 1999. User’s guide to PHREEQC (Version 2) — a computer program for speciation, batch reaction, one dimensional transport, and inverse agrochemicals calculations. Water-Resources Investigations Report 4259, US Department of the Interior, Denver, CO, USA.

    Google Scholar 

  • Puustjärvi, V. 1970. Degree of humification. Peat Plant News 3:48–52.

    Google Scholar 

  • Roden, E. E. and J. W. Edmonds. 1997. Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Archiv für Hydrobiologie 139:347–78.

    CAS  Google Scholar 

  • Roelofs, J. G. M. 1991. Inlet of alkaline river water into peaty lowlands: effect on water quality andStratiotes aloides L. stands. Aquatic Botany 46:267–93.

    Article  Google Scholar 

  • Scheffer, B. and J. Blankenburg. 1993. The determination of the bulk density of peat soils. Agribiological Research 46: 46–53.

    Google Scholar 

  • Sinke, A. J. C., A. A. Cornlese, T. E. Cappenberg, and A. J. B. Zehnder. 1992. Seasonal variation in sulfate reduction and methanogenesis in peaty sediments of eutrophic Lake Loosdrecht, The Netherlands. Biogeochemistry 16:43–61.

    CAS  Google Scholar 

  • Smolders, A. J. P., L. P. M. Lamers, M. Moonen, K. Zwaga, and J. G. M. Roelofs. 2001. Controlling phosphate release from phosphate-enriched sediments by adding various iron compounds. Biogeochemistry 54:219–28.

    Article  CAS  Google Scholar 

  • Smolders, A. and J. G. M. Roelofs. 1993. Sulphate-mediated iron limitation and eutrophication in aquatic ecosystems. Aquatic Botany 46:247–53.

    Article  CAS  Google Scholar 

  • Smolders, A. J. P., M. Moonen, K. Zwaga, E. C. H. E. T. Lucassen, L. P. M. Lamers, and J. G. M. Roelofs. 2006. Changes in pore water chemistry of desiccating freshwater sediments with different sulphur contents. Geoderma 132:372–83.

    Article  CAS  Google Scholar 

  • Stoddard, J. L., et al. (22 authors). 1999. Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401:575–78.

    Article  CAS  Google Scholar 

  • Urban, N. R., P. L. Brezonik, L. A. Baker, and L. A. Sherman. 1994. Sulfate reduction and diffusion in sediments of Little Rock Lake, Wisconsin. Limnology and Oceanography 39:797–815.

    Article  CAS  Google Scholar 

  • Van der Welle, M. E. W., J. G. M. Roelofs, and L. P. M. Lamers. 2008. Multi-level effects of sulphur-iron interactions in freshwater wetlands in The Netherlands. Science of the Total Environment 406:426–29.

    Article  PubMed  CAS  Google Scholar 

  • Wang, F. and P. M. Chapman. 1999. Biological implications of sulphide in sediment — a review focusing on sediment toxicity. Environmental Toxicology and Chemistry 18:2526–32.

    CAS  Google Scholar 

  • Whitmire, S. L. and S. K. Hamilton. 2005. Rapid removal of nitrate and sulfate in freshwater wetland sediments. Journal of Environmental Quality 34:2062–71.

    Article  CAS  PubMed  Google Scholar 

  • Zak, D. and J. Gelbrecht. 2007. The mobilization of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from NE Germany). Biogeochemistry 85:141–51.

    Article  CAS  Google Scholar 

  • Zak, D., J. Gelbrecht, and C. E. W. Steinberg. 2004. Phosphorus retention at the redox interface of peatlands adjacent to surface waters in northeast Germany. Biogeochemistry 70:357–68.

    Article  CAS  Google Scholar 

  • Zak, D., J. Gelbrecht, C. Wagner, and C. E. W. Steinberg. 2008. Evaluation of phosphorus mobilization potential in rewetted fens by an improved sequential chemical extraction procedure. European Journal of Soil Science 59:1191–201.

    Article  CAS  Google Scholar 

  • Zak, D., A. Kleeberg, and M. Hupfer. 2006. Sulphate-mediated phosphorus mobilization in riverine sediments at increasing sulphate concentration, River Spree, NE Germany. Biogeochemistry 80:109–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Zak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zak, D., Rossoll, T., Exner, HJ. et al. Mitigation of sulfate pollution by rewetting of fens — A conflict with restoring their phosphorus sink function?. Wetlands 29, 1093–1103 (2009). https://doi.org/10.1672/09-102D.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/09-102D.1

Key Words

Navigation