, Volume 20, Issue 2, pp 323–332 | Cite as

Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA

  • Christopher B. CraftEmail author
  • William P. Casey


Soil accretion, sediment deposition, and nutrient (N, P, organic C) accumulation were compared in floodplain and depressional freshwater wetlands of southwestern Georgia, USA to evaluate the role of riverine (2600 km2 catchment) versus depressional (<10 km2 catchment) wetlands as sinks for sediment and nutrients. Soil cores were collected from three floodplain (cypress-gum) and nine depressional (three each from cypress-gum forest, cypress-savannah, and herbaceous marsh) wetlands and analyzed for radionuclides (137Cs, 210Pb), bulk density, N, P, and organic C to quantify recent (30-year) and long-term (100-year) rates of sediment and nutrient accumulation. There was no significant difference in organic C, N, or sediment accumulation between depressional and floodplain wetlands. However, P accumulation was 1.5 to three times higher in the floodplain (0.12–0.75 g/m2/yr) than in the depressional wetlands (0.08–0.25 g/m2/yr). Sediment and nutrient accumulations were highly variable among depressional wetland types, more so than between depressional and floodplain wetlands. This variability likely is the result of differences in historical land use, hydrology, vegetation type, NPP, and perhaps fire frequency. Mean (n=12) one-hundred-year rates of sediment deposition (1036 g/m2/yr), organic C (79 g/m2/yr), N (6.0 g/m2/yr), and P accumulation (0.38 g/m2/yr) were much higher than 30-year rates (sediment=118 g/m2/yr, C=20 g/m2/yr, N=1.5 g/m2/yr, P =0.09 g/m2/yr). Higher 100-year (210Pb) sediment and nutrient accumulations likely reflect the greater numbers of farms, greater grazing by livestock, and the absence of environmentally sound agricultural practices in southwestern Georgia at the turn of the century. Our findings suggest that the degree of anthropogenic disturbance within the surrounding watershed regulates wetland sediment, organic C, and N accumulation. Phosphorus accumulation also is greater is floodplain wetlands that have large catchments containing fine textured (clay) sediments that are co-deposited with P.

Key words

anthropogenic disturbance water quality sedimentation erosion nutrient retention organic carbon nitrogen phosphorus cesium-137 lead-210 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Arndt, J. L. and J. L. Richardson. 1988. Hydrology, salinity and hydric soil development in a North Dakota prairie-pothole wetland system. Wetlands 8:93–108.CrossRefGoogle Scholar
  2. Baker County Historical Society. 1991. The History of Baker County, Georgia. W.H. Wolfe Associates, Roswell, GA, USA.Google Scholar
  3. Bedford, B. L., M. R. Walbridge and A. Aldous. 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80:2151–2169.CrossRefGoogle Scholar
  4. Bridgham, S. D., J. Pastor, J. A. Jannsens, C. Chapin, and T. J. Malterer. 1996. Multiple limiting gradients in peatlands: a call for a new paradigm. Wetlands 16:45–65.Google Scholar
  5. Brinson, M. M., B. L. Swift, R. C. Plantico, and J. S. Barclay. 1981a. Riparian ecosystems: their ecology and status. U.S. Fish and Wildlife Service, Biological Services Program, Washington, DC, USA. FWS/OBS-81/17.Google Scholar
  6. Brinson, M. M., A. E. Lugo, and S. Brown. 1981b. Primary productivity, decomposition and consumer activity in freshwater wetlands. Annual Review of Ecological Systems 12:123–161.CrossRefGoogle Scholar
  7. Brown, S. L. 1978. A comparison of cypress ecosystems in the landscape of Florida. Ph.D Dissertation. University of Florida, Gainesville, FL, USA.Google Scholar
  8. Burke, W. 1975. Fertilizer and other chemical losses in drainage water from blanket bog. Irish Journal of Agricultural Research 14: 163–178.Google Scholar
  9. Chen, E. and J. F. Gerber. 1990. Climate. p. 11–34. In R. L. Myers and J. J. Ewel (eds.) Ecosystems of Florida. University of Central Florida Press, Orlando, FL, USA.Google Scholar
  10. Cooper, J. R. and J. W. Gilliam. 1987. Phosphorus redistribution from cultivated fields into riparian areas. Soil Science Society of America Journal 51:1600–1604.CrossRefGoogle Scholar
  11. Cooper, J. R., J. W. Gilliam, R. B. Daniels, and W. P. Robarge. 1987. Riparian areas as filters for agricultural sediment. Soil Science Society of America Journal 51:416–420.CrossRefGoogle Scholar
  12. Coultas, C. L. and M. J. Duever. 1984. Soils of cypress swamps. p. 51–59. In K.C. Ewel and H.T. Odum (eds.) Cypress Swamps. University of Florida Press, Gainesville, FL, USA.Google Scholar
  13. Craft, C. B. 1999. Biology of wetland soils. In J. L. Richardson and M. J. Vepraskas (eds.) Wetland Soils: Their Genesis Hydrology, Landscape, and Separation into Hydric and Nonhydric Soils. Ann Arbor Press, Chelsea, MI, USA.Google Scholar
  14. Craft, C. B. and W. P. Casey. 1999. Sediment and nutrient accumulation in floodplain and depressional cypress-gum forest soils of southwestern Georgia. p. 443–446. In K. J. Hatcher (ed.) Proceedings of the 1999 Georgia Water Resources Conference. University of Georgia, Athens, GA, USA.Google Scholar
  15. Craft, C. B. and C. J. Richardson. 1998. Recent and long-term organic soil accretion and nutrient accumulation in the Everglades. Soil Science Society of America Journal 62:834–843.CrossRefGoogle Scholar
  16. Craft, C. B., E. D. Seneca, and S. W. Broome. 1993. Vertical accretion in microtidal regularly and irregularly flooded estuarine marshes. Estuarine Coastal and Shelf Science 37:371–386.CrossRefGoogle Scholar
  17. Davis, J. J. 1963. Cesium and its relationships to potassium in ecology. p. 539–556. In V. Schultz and A.W. Klement, Jr. (eds.) Radioecology. Reinhold, New York, NY, USA.Google Scholar
  18. Dierberg, F. E. and P. L. Brezonik. 1983. Nitrogen and phosphorus mass balances in natural and sewage enriched cypress domes. Journal of Applied Ecology 20:323–337.CrossRefGoogle Scholar
  19. Folkerts, G. W. 1997. Citronelle ponds: little-known wetlands of the central Gulf Coastal Plain. Natural Areas Journal 17:6–16.Google Scholar
  20. Freeland, J. A., J. L. Richardson, and L. A. Foss. 1999. Soil indicators of agricultural impacts on northern prairie wetlands: Cottonwood Lake Research Area, North Dakota, USA. Wetlands 19: 56–64.CrossRefGoogle Scholar
  21. Goebel, P. C., B. J. Palik, L. K. Kirkman, and L. West. 1997. Field guide: landscape ecosystem types of Ichauway. Joseph W. Jones Ecological Research Center. Newton, GA, USA. Technical Report 97-01.Google Scholar
  22. Golladay, S. W., B. W. Taylor, and B. J. Palik. 1997. Invertebrate communities of forested limesink wetlands in southwest Georgia. USA: habitat use and influence of extended inundation. Wetlands 17:383–393.Google Scholar
  23. Hopkinson, C. S. 1992. A comparison of ecosystem dynamics in freshwater wetlands. Estuaries 15:549–562.CrossRefGoogle Scholar
  24. Johnston, C.A. 1991. Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Critical Reviews in Environmental Control 21:491–565.CrossRefGoogle Scholar
  25. Johnston, C. A., G. D. Bubenzer, G. B. Lee, F. W. Madison, and J. R. McHenry. 1984. Nutrient trapping by sediment deposition in a seasonally flooded lakeside wetland. Journal of Environmental Quality 13:283–290.CrossRefGoogle Scholar
  26. Kirkman, L. K., M. B. Drew, L. T. West, and E. R. Blood. 1998. Ecotone characterization between upland longleaf pine/wiregrass stands and seasonally-ponded isolated wetlands. Wetlands 18: 346–364.CrossRefGoogle Scholar
  27. Kirkman, L. K., P. C. Goebel, L. West, M. B. Drew, and B. J. Palik 2000. Depressional wetland reference sites: a question of plant community development. Wetlands 20: (In press.)Google Scholar
  28. Kleiss, B. A. 1996. Sediment retention in a bottomland hardwood wetland in eastern Arkansas. Wetlands 16:321–333.CrossRefGoogle Scholar
  29. Koerselman, W. and A. F. M. Meuleman. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33:1441–1450.CrossRefGoogle Scholar
  30. Kuenzler, E. J., P. J. Mulholland, L. A. Yarbro and L. A. Smock. 1980. Distributions and budgets of carbon, phosphorus, iron and manganese in a floodplain swamp ecosystem. Water Resources Research Institute of the University of North Carolina. Raleigh, NC, USA. Report No. 157.Google Scholar
  31. Lowrance, R., J. K. Sharpe, and J. M. Sheridan. 1986. Long-term sediment deposition in the riparian zone of a coastal plain watershed. Journal of Soil and Water Conservation 41:266–271.Google Scholar
  32. Luo, H., L. M. Smith, D. A. Haukos, and B. L. Allen. 1999. Sources of recently deposited sediments in playa wetlands. Wetlands 19: 176–181.CrossRefGoogle Scholar
  33. Marrs, R. H. 1993. Soil fertility and nature conservation in Europe theoretical considerations and practical management solutions. Advances in Ecological Research 24:241–300.CrossRefGoogle Scholar
  34. Martin, D. B. and W. A. Hartman. 1987. Correlations between selected trace elements and organic matter and texture in sediments of northern prairie wetlands. Journal—Association of Official Analytical Chemists 70:916.Google Scholar
  35. Mausbach, M. J. and J. L. Richardson. 1994. Biogeochemical processes in hydric soil formation. Current Topics in Wetland Biogeochemistry 1:68–127.Google Scholar
  36. McHenry, J. R. and J. C. Ritchie. 1975. Redistribution of cesium-137 in southeastern watersheds. p. 452–461. In F.G. Howell, J.B. Gentry, and M.H. Smith (eds.) Mineral Cycling in Southeastern Ecosystems. Energy Research and Development Administration (ERDA), Washington, DC, USA. Symposium series. CONF 74-740513.Google Scholar
  37. Megonigal, J. P. and F. P. Day, Jr. 1988. Organic matter dynamics in four seasonally flooded forest communities of the Dismal Swamp. American Journal of Botany 75:1334–1343.CrossRefGoogle Scholar
  38. Megonigal, J. P., W. H. Conner, S. Kroeger, and R. R. Sharitz. 1997. Aboveground production in southeastern floodplain forests: a test of the subsidy-stress hypothesis. Ecology 78:370–384.Google Scholar
  39. Mitsch, W.I. and J.G. Gosselink. 1993. Wetlands. Van Nostrand Reinhold, New York, NY, USA.Google Scholar
  40. Mitsch, W. J., C. L. Dorge, and J. R. Wiemhoff. 1979. Ecosystem dynamics and a phosphorus budget of an alluvial cypress swamp in southern Illinois. Ecology 60:1116–1124.CrossRefGoogle Scholar
  41. Moore, D. R. J., P. A. Keddy, C. L. Gaudet, and I. C. Wisheu. 1989. Conservation of wetlands: do infertile wetlands deserve a higher priority? Biological Conservation 47:203–217.CrossRefGoogle Scholar
  42. Naiman, R. J. and H. Decamps. 1997. The ecology of interfaces: riparian zones. Annual Review of Ecology and Systematics 28: 621–658.CrossRefGoogle Scholar
  43. National Oceanic and Atmospheric Administration. 1999a. ( Scholar
  44. National Climatic Data Center, Asheville, NC, USA.Google Scholar
  45. National Oceanic and Atmospheric Administration. 1999b. ( Southeast Regional Climate Center. Columbia, SC, USA.Google Scholar
  46. Nessel, J. K. and S. E. Bayley. 1984. Distribution and dynamics of organic matter and phosphorus in a sewage-enriched cypress swamp. p. 262–278. In K.C. Ewel and H.T. Odum (eds.) Cypress Swamps. University of Florida Press, Gainesville, FL, USA.Google Scholar
  47. Oldfield, F. and P. G. Appleby. 1984. Empirical testing of 210Pb models for dating lake sediments. p. 93–124. In E.Y. Haworth and J.W.G. Lund (eds.) Lake Sediments and Environmental History. University of Minnesota Press, Minneapolis, MN, USA.Google Scholar
  48. Peterjohn, W. T. and D. L. Correll. 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 65:1466–1475.CrossRefGoogle Scholar
  49. Reese, R. E. and K. K. Moorhead. 1996. Spatial characteristics of soil properties along an elevational gradient in a Carolina Bay wetland. Soil Science Society of America Journal 60:1273–1277.CrossRefGoogle Scholar
  50. Richardson, C. J., D. J. Tilton, J. A. Kadlec, J. P. M. Chamie, and W. A. Wentz. 1978. Nutrient dynamics of northern wetland ecosystems. p. 217–241. In R. E. Good, D. F. Whigham, and R. L. Simpson (eds.) Freshwater Wetlands: Ecological Processes and Management Potential. Academic Press, New York, NY, USA.Google Scholar
  51. Richardson, J. L. and R. J. Bigler. 1984. Principal component analysis of prairie pothole soils in North Dakota. Soil Science Society of America Journal 48:1350–1355.CrossRefGoogle Scholar
  52. Ritchie, J. C. and J. R. McHenry. 1990. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. Journal of Environmental Quality 19:215–233.CrossRefGoogle Scholar
  53. SAS (Statistical Analysis Systems). 1990. SAS/STAT User’s Guide. SAS Institute Inc., Cary, NC, USA.Google Scholar
  54. Schalles, J. F. and D. J. Shure. 1989. Hydrology, community structure and productivity patterns of a dystrophic Carolina Bay wetland. Ecological Monographs 59:365–385.CrossRefGoogle Scholar
  55. Schelske, C. L., J. A. Robbins, W. D. Gardner, D. J. Conley, and R. A. Bourbonniere. 1988. Sediment record of biogeochemical responses to anthropogenic perturbations of nutrient cycles in Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences 45: 1291–1303.Google Scholar
  56. Sommers, L. E. and D. W. Nelson. 1972. Determination of total phosphorus in soils: a rapid perchloric acid digestion procedure. Soil Science Society of America Journal 36:902–904.CrossRefGoogle Scholar
  57. Sutter, R. D. and R. Kral. 1994. The ecology, status and conservation of two non-alluvial wetland communities in the south Atlantic and eastern Gulf Coastal Plain. Biological Conservation 68:235–243CrossRefGoogle Scholar
  58. Tisdale, S. L., W. L. Nelson, and J. D. Beaton. 1985. Soil Fertility and Fertilizers. Macmillan Publishing, Co., New York, NY, USA.Google Scholar
  59. USDA. 1986. Soil survey of Baker and Mitchell Counties. Georgia U.S. Department of Agriculture, Soil Conservation Service. Washington, DC, USA.Google Scholar
  60. van der Valk, A. G. (ed.) 1989. Northern Prairie Wetlands. Iowa State University Press. Ames, IA, USA.Google Scholar
  61. Watt, K. M. and S. W. Golladay. 1999. Organic matter dynamics in seasonally inundated forested wetlands of the gulf coastal plain. Wetlands 19:139–148.CrossRefGoogle Scholar
  62. Zedler, P. H. 1987. The ecology of southern California vernal pools: a community profile. U.S. Fish and Wildlife Service, Washington, DC, USA. Biological Report 85(7.11).Google Scholar

Copyright information

© Society of Wetland Scientists 2000

Authors and Affiliations

  1. 1.Joseph W. Jones Ecological Research CenterNewtonUSA

Personalised recommendations