Skip to main content
Log in

Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Soil accretion, sediment deposition, and nutrient (N, P, organic C) accumulation were compared in floodplain and depressional freshwater wetlands of southwestern Georgia, USA to evaluate the role of riverine (2600 km2 catchment) versus depressional (<10 km2 catchment) wetlands as sinks for sediment and nutrients. Soil cores were collected from three floodplain (cypress-gum) and nine depressional (three each from cypress-gum forest, cypress-savannah, and herbaceous marsh) wetlands and analyzed for radionuclides (137Cs, 210Pb), bulk density, N, P, and organic C to quantify recent (30-year) and long-term (100-year) rates of sediment and nutrient accumulation. There was no significant difference in organic C, N, or sediment accumulation between depressional and floodplain wetlands. However, P accumulation was 1.5 to three times higher in the floodplain (0.12–0.75 g/m2/yr) than in the depressional wetlands (0.08–0.25 g/m2/yr). Sediment and nutrient accumulations were highly variable among depressional wetland types, more so than between depressional and floodplain wetlands. This variability likely is the result of differences in historical land use, hydrology, vegetation type, NPP, and perhaps fire frequency. Mean (n=12) one-hundred-year rates of sediment deposition (1036 g/m2/yr), organic C (79 g/m2/yr), N (6.0 g/m2/yr), and P accumulation (0.38 g/m2/yr) were much higher than 30-year rates (sediment=118 g/m2/yr, C=20 g/m2/yr, N=1.5 g/m2/yr, P =0.09 g/m2/yr). Higher 100-year (210Pb) sediment and nutrient accumulations likely reflect the greater numbers of farms, greater grazing by livestock, and the absence of environmentally sound agricultural practices in southwestern Georgia at the turn of the century. Our findings suggest that the degree of anthropogenic disturbance within the surrounding watershed regulates wetland sediment, organic C, and N accumulation. Phosphorus accumulation also is greater is floodplain wetlands that have large catchments containing fine textured (clay) sediments that are co-deposited with P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Arndt, J. L. and J. L. Richardson. 1988. Hydrology, salinity and hydric soil development in a North Dakota prairie-pothole wetland system. Wetlands 8:93–108.

    Article  Google Scholar 

  • Baker County Historical Society. 1991. The History of Baker County, Georgia. W.H. Wolfe Associates, Roswell, GA, USA.

    Google Scholar 

  • Bedford, B. L., M. R. Walbridge and A. Aldous. 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80:2151–2169.

    Article  Google Scholar 

  • Bridgham, S. D., J. Pastor, J. A. Jannsens, C. Chapin, and T. J. Malterer. 1996. Multiple limiting gradients in peatlands: a call for a new paradigm. Wetlands 16:45–65.

    Google Scholar 

  • Brinson, M. M., B. L. Swift, R. C. Plantico, and J. S. Barclay. 1981a. Riparian ecosystems: their ecology and status. U.S. Fish and Wildlife Service, Biological Services Program, Washington, DC, USA. FWS/OBS-81/17.

    Google Scholar 

  • Brinson, M. M., A. E. Lugo, and S. Brown. 1981b. Primary productivity, decomposition and consumer activity in freshwater wetlands. Annual Review of Ecological Systems 12:123–161.

    Article  Google Scholar 

  • Brown, S. L. 1978. A comparison of cypress ecosystems in the landscape of Florida. Ph.D Dissertation. University of Florida, Gainesville, FL, USA.

    Google Scholar 

  • Burke, W. 1975. Fertilizer and other chemical losses in drainage water from blanket bog. Irish Journal of Agricultural Research 14: 163–178.

    CAS  Google Scholar 

  • Chen, E. and J. F. Gerber. 1990. Climate. p. 11–34. In R. L. Myers and J. J. Ewel (eds.) Ecosystems of Florida. University of Central Florida Press, Orlando, FL, USA.

    Google Scholar 

  • Cooper, J. R. and J. W. Gilliam. 1987. Phosphorus redistribution from cultivated fields into riparian areas. Soil Science Society of America Journal 51:1600–1604.

    Article  Google Scholar 

  • Cooper, J. R., J. W. Gilliam, R. B. Daniels, and W. P. Robarge. 1987. Riparian areas as filters for agricultural sediment. Soil Science Society of America Journal 51:416–420.

    Article  Google Scholar 

  • Coultas, C. L. and M. J. Duever. 1984. Soils of cypress swamps. p. 51–59. In K.C. Ewel and H.T. Odum (eds.) Cypress Swamps. University of Florida Press, Gainesville, FL, USA.

    Google Scholar 

  • Craft, C. B. 1999. Biology of wetland soils. In J. L. Richardson and M. J. Vepraskas (eds.) Wetland Soils: Their Genesis Hydrology, Landscape, and Separation into Hydric and Nonhydric Soils. Ann Arbor Press, Chelsea, MI, USA.

    Google Scholar 

  • Craft, C. B. and W. P. Casey. 1999. Sediment and nutrient accumulation in floodplain and depressional cypress-gum forest soils of southwestern Georgia. p. 443–446. In K. J. Hatcher (ed.) Proceedings of the 1999 Georgia Water Resources Conference. University of Georgia, Athens, GA, USA.

    Google Scholar 

  • Craft, C. B. and C. J. Richardson. 1998. Recent and long-term organic soil accretion and nutrient accumulation in the Everglades. Soil Science Society of America Journal 62:834–843.

    Article  CAS  Google Scholar 

  • Craft, C. B., E. D. Seneca, and S. W. Broome. 1993. Vertical accretion in microtidal regularly and irregularly flooded estuarine marshes. Estuarine Coastal and Shelf Science 37:371–386.

    Article  CAS  Google Scholar 

  • Davis, J. J. 1963. Cesium and its relationships to potassium in ecology. p. 539–556. In V. Schultz and A.W. Klement, Jr. (eds.) Radioecology. Reinhold, New York, NY, USA.

    Google Scholar 

  • Dierberg, F. E. and P. L. Brezonik. 1983. Nitrogen and phosphorus mass balances in natural and sewage enriched cypress domes. Journal of Applied Ecology 20:323–337.

    Article  CAS  Google Scholar 

  • Folkerts, G. W. 1997. Citronelle ponds: little-known wetlands of the central Gulf Coastal Plain. Natural Areas Journal 17:6–16.

    Google Scholar 

  • Freeland, J. A., J. L. Richardson, and L. A. Foss. 1999. Soil indicators of agricultural impacts on northern prairie wetlands: Cottonwood Lake Research Area, North Dakota, USA. Wetlands 19: 56–64.

    Article  Google Scholar 

  • Goebel, P. C., B. J. Palik, L. K. Kirkman, and L. West. 1997. Field guide: landscape ecosystem types of Ichauway. Joseph W. Jones Ecological Research Center. Newton, GA, USA. Technical Report 97-01.

    Google Scholar 

  • Golladay, S. W., B. W. Taylor, and B. J. Palik. 1997. Invertebrate communities of forested limesink wetlands in southwest Georgia. USA: habitat use and influence of extended inundation. Wetlands 17:383–393.

    Google Scholar 

  • Hopkinson, C. S. 1992. A comparison of ecosystem dynamics in freshwater wetlands. Estuaries 15:549–562.

    Article  CAS  Google Scholar 

  • Johnston, C.A. 1991. Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Critical Reviews in Environmental Control 21:491–565.

    Article  Google Scholar 

  • Johnston, C. A., G. D. Bubenzer, G. B. Lee, F. W. Madison, and J. R. McHenry. 1984. Nutrient trapping by sediment deposition in a seasonally flooded lakeside wetland. Journal of Environmental Quality 13:283–290.

    Article  CAS  Google Scholar 

  • Kirkman, L. K., M. B. Drew, L. T. West, and E. R. Blood. 1998. Ecotone characterization between upland longleaf pine/wiregrass stands and seasonally-ponded isolated wetlands. Wetlands 18: 346–364.

    Article  Google Scholar 

  • Kirkman, L. K., P. C. Goebel, L. West, M. B. Drew, and B. J. Palik 2000. Depressional wetland reference sites: a question of plant community development. Wetlands 20: (In press.)

  • Kleiss, B. A. 1996. Sediment retention in a bottomland hardwood wetland in eastern Arkansas. Wetlands 16:321–333.

    Article  Google Scholar 

  • Koerselman, W. and A. F. M. Meuleman. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33:1441–1450.

    Article  Google Scholar 

  • Kuenzler, E. J., P. J. Mulholland, L. A. Yarbro and L. A. Smock. 1980. Distributions and budgets of carbon, phosphorus, iron and manganese in a floodplain swamp ecosystem. Water Resources Research Institute of the University of North Carolina. Raleigh, NC, USA. Report No. 157.

    Google Scholar 

  • Lowrance, R., J. K. Sharpe, and J. M. Sheridan. 1986. Long-term sediment deposition in the riparian zone of a coastal plain watershed. Journal of Soil and Water Conservation 41:266–271.

    Google Scholar 

  • Luo, H., L. M. Smith, D. A. Haukos, and B. L. Allen. 1999. Sources of recently deposited sediments in playa wetlands. Wetlands 19: 176–181.

    Article  Google Scholar 

  • Marrs, R. H. 1993. Soil fertility and nature conservation in Europe theoretical considerations and practical management solutions. Advances in Ecological Research 24:241–300.

    Article  CAS  Google Scholar 

  • Martin, D. B. and W. A. Hartman. 1987. Correlations between selected trace elements and organic matter and texture in sediments of northern prairie wetlands. Journal—Association of Official Analytical Chemists 70:916.

    CAS  Google Scholar 

  • Mausbach, M. J. and J. L. Richardson. 1994. Biogeochemical processes in hydric soil formation. Current Topics in Wetland Biogeochemistry 1:68–127.

    Google Scholar 

  • McHenry, J. R. and J. C. Ritchie. 1975. Redistribution of cesium-137 in southeastern watersheds. p. 452–461. In F.G. Howell, J.B. Gentry, and M.H. Smith (eds.) Mineral Cycling in Southeastern Ecosystems. Energy Research and Development Administration (ERDA), Washington, DC, USA. Symposium series. CONF 74-740513.

    Google Scholar 

  • Megonigal, J. P. and F. P. Day, Jr. 1988. Organic matter dynamics in four seasonally flooded forest communities of the Dismal Swamp. American Journal of Botany 75:1334–1343.

    Article  Google Scholar 

  • Megonigal, J. P., W. H. Conner, S. Kroeger, and R. R. Sharitz. 1997. Aboveground production in southeastern floodplain forests: a test of the subsidy-stress hypothesis. Ecology 78:370–384.

    Google Scholar 

  • Mitsch, W.I. and J.G. Gosselink. 1993. Wetlands. Van Nostrand Reinhold, New York, NY, USA.

    Google Scholar 

  • Mitsch, W. J., C. L. Dorge, and J. R. Wiemhoff. 1979. Ecosystem dynamics and a phosphorus budget of an alluvial cypress swamp in southern Illinois. Ecology 60:1116–1124.

    Article  Google Scholar 

  • Moore, D. R. J., P. A. Keddy, C. L. Gaudet, and I. C. Wisheu. 1989. Conservation of wetlands: do infertile wetlands deserve a higher priority? Biological Conservation 47:203–217.

    Article  Google Scholar 

  • Naiman, R. J. and H. Decamps. 1997. The ecology of interfaces: riparian zones. Annual Review of Ecology and Systematics 28: 621–658.

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration. 1999a. (http://www.ncdc.noaa.gov).

  • National Climatic Data Center, Asheville, NC, USA.

  • National Oceanic and Atmospheric Administration. 1999b. (http://water.dnr.state.sc.us/climate/sercc). Southeast Regional Climate Center. Columbia, SC, USA.

  • Nessel, J. K. and S. E. Bayley. 1984. Distribution and dynamics of organic matter and phosphorus in a sewage-enriched cypress swamp. p. 262–278. In K.C. Ewel and H.T. Odum (eds.) Cypress Swamps. University of Florida Press, Gainesville, FL, USA.

    Google Scholar 

  • Oldfield, F. and P. G. Appleby. 1984. Empirical testing of 210Pb models for dating lake sediments. p. 93–124. In E.Y. Haworth and J.W.G. Lund (eds.) Lake Sediments and Environmental History. University of Minnesota Press, Minneapolis, MN, USA.

    Google Scholar 

  • Peterjohn, W. T. and D. L. Correll. 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 65:1466–1475.

    Article  CAS  Google Scholar 

  • Reese, R. E. and K. K. Moorhead. 1996. Spatial characteristics of soil properties along an elevational gradient in a Carolina Bay wetland. Soil Science Society of America Journal 60:1273–1277.

    Article  CAS  Google Scholar 

  • Richardson, C. J., D. J. Tilton, J. A. Kadlec, J. P. M. Chamie, and W. A. Wentz. 1978. Nutrient dynamics of northern wetland ecosystems. p. 217–241. In R. E. Good, D. F. Whigham, and R. L. Simpson (eds.) Freshwater Wetlands: Ecological Processes and Management Potential. Academic Press, New York, NY, USA.

    Google Scholar 

  • Richardson, J. L. and R. J. Bigler. 1984. Principal component analysis of prairie pothole soils in North Dakota. Soil Science Society of America Journal 48:1350–1355.

    Article  CAS  Google Scholar 

  • Ritchie, J. C. and J. R. McHenry. 1990. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. Journal of Environmental Quality 19:215–233.

    Article  CAS  Google Scholar 

  • SAS (Statistical Analysis Systems). 1990. SAS/STAT User’s Guide. SAS Institute Inc., Cary, NC, USA.

    Google Scholar 

  • Schalles, J. F. and D. J. Shure. 1989. Hydrology, community structure and productivity patterns of a dystrophic Carolina Bay wetland. Ecological Monographs 59:365–385.

    Article  Google Scholar 

  • Schelske, C. L., J. A. Robbins, W. D. Gardner, D. J. Conley, and R. A. Bourbonniere. 1988. Sediment record of biogeochemical responses to anthropogenic perturbations of nutrient cycles in Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences 45: 1291–1303.

    CAS  Google Scholar 

  • Sommers, L. E. and D. W. Nelson. 1972. Determination of total phosphorus in soils: a rapid perchloric acid digestion procedure. Soil Science Society of America Journal 36:902–904.

    Article  CAS  Google Scholar 

  • Sutter, R. D. and R. Kral. 1994. The ecology, status and conservation of two non-alluvial wetland communities in the south Atlantic and eastern Gulf Coastal Plain. Biological Conservation 68:235–243

    Article  Google Scholar 

  • Tisdale, S. L., W. L. Nelson, and J. D. Beaton. 1985. Soil Fertility and Fertilizers. Macmillan Publishing, Co., New York, NY, USA.

    Google Scholar 

  • USDA. 1986. Soil survey of Baker and Mitchell Counties. Georgia U.S. Department of Agriculture, Soil Conservation Service. Washington, DC, USA.

    Google Scholar 

  • van der Valk, A. G. (ed.) 1989. Northern Prairie Wetlands. Iowa State University Press. Ames, IA, USA.

    Google Scholar 

  • Watt, K. M. and S. W. Golladay. 1999. Organic matter dynamics in seasonally inundated forested wetlands of the gulf coastal plain. Wetlands 19:139–148.

    Article  Google Scholar 

  • Zedler, P. H. 1987. The ecology of southern California vernal pools: a community profile. U.S. Fish and Wildlife Service, Washington, DC, USA. Biological Report 85(7.11).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher B. Craft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craft, C.B., Casey, W.P. Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA. Wetlands 20, 323–332 (2000). https://doi.org/10.1672/0277-5212(2000)020[0323:SANAIF]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2000)020[0323:SANAIF]2.0.CO;2

Key words

Navigation