Skip to main content
Log in

The ecophysiology of foliar anthocyanin

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The accumulation of foliar anthocyanins can be consistently attributed to a small range of contexts. Foliar anthocyanin accumulates in young, expanding foliage, in autumnal foliage of deciduous species, in response to nutrient deficiency or ultraviolet (UV) radiation exposure, and in association with damage or defense against browsing herbivores or pathogenic fungal infection. A common thread through these causative factors is low photosynthetic capacity of foliage with accumulated anthocyanin relative to leaves at different ontogenetic stages or unaffected by the environmental factor in question.

The ecophysiological function of anthocyanin has been hypothesized as: 1) a compatible solute contributing to osmotic adjustment to drought and frost stress; 2) an antioxidant; 3) a UV protectant; and 4) protection from visible light. Review of the internal leaf distribution of anthocyanin, of experimental evidence using seedlings, and of studies that directly investigated light absorption by anthocyanin and its development relative to recognized processes of photoprotection support the hypothesis that anthocyanins provide protection from visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Armitage, A. M. &W. H. Carlson. 1981. The effect of quantum flux density, day and night temperature and phosphorus and potassium status on anthocyanin and chlorophyll content in marigold leaves. J. Amer. Soc. Hort. Sci. 106: 639–642.

    CAS  Google Scholar 

  • Atkinson, D. 1973. Some general effects of phosphorus deficiency on growth and development. New Phytol. 72: 101–111.

    Article  CAS  Google Scholar 

  • Bajaj, K. L., D. Singh &G Kaur. 1989. Biochemical basis of relative field resistance of eggplant (Solarium melongena) to the shoot and fruit borer (Leucinodes orbonalis Guen.). Veg. Sci. 16: 145–149.

    Google Scholar 

  • Barker, D. H., G G R. Seaton &S. A. Robinson. 1997. Internal and external photoprotection in developing leaves of the CAM plantCotyledon orbiculata. Pl. Cell Environ. 20: 617–624.

    Article  CAS  Google Scholar 

  • Beggs, C. J. &E. Wellmann. 1985. Analysis of light controlled anthocyanin formation in coleoptiles ofZea mays L.: The role of UV-B, blue, red and far-red light. Photochem. & Photobiol. 41: 481–486.

    Article  CAS  Google Scholar 

  • Bhandal, I. &C. P. Malik. 1988. Potassium estimation, uptake and its role in the physiology and metabolism of flowering plants. Int. Rev. Cytol. 110: 205–254.

    Article  CAS  Google Scholar 

  • Bongue-Bartelsman, M. &D. A. Phillips. 1995. Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic pathway of tomato. Pl. Physiol. & Biochem. 33: 539–546.

    CAS  Google Scholar 

  • Boo, H., Y. Tomitaka, M. Ishimura &M. Kamura. 1997. Effect of environmental factors on anthocyanin synthesis and sugar content inCichorium intybus L. var. foliosum. Environ. Control Biol. 35: 91–98.

    Google Scholar 

  • Brandt, K., A. Giannini &B. Lercari. 1995. Photomorphologenic responses to UV radiation, III: A comparative study of UV-B effects on anthocyanin and flavonoid accumulation in wild-type andaurea mutant of tomato (Lycospericon esculentum Mill). Photochem. & Photobiol. 62: 1081–1087.

    Article  CAS  Google Scholar 

  • Bullard, R. W., P. P. Woronecki, R. A. Dolbeer &J. R. Mason. 1989. Biochemical and morphological characteristics in maturing achenes from purple-hulled and oilseed sunflower cultivars. J. Agric. Food Chem. 37: 886–890.

    Article  CAS  Google Scholar 

  • Burdett, A. N. 1990. Physiological processes in plantation establishment and the development of specifications for forest planting stock. Canad. J. Forest Res. 20: 415–427.

    Article  Google Scholar 

  • Burger, J. &G E. Edwards. 1996. Photosynthetic efficiency and photodamage by UV and visible radiation, in red versus green leaf coleus varieties. Pl. Cell Physiol. 37: 395–399.

    CAS  Google Scholar 

  • Chalker-Scott, L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochem. & Photobiol. 70: 1–9.

    CAS  Google Scholar 

  • Choinski, J. S. &J. M. Johnson. 1993. Changes in photosynthesis and water status of developing leaves ofBrachystegia spiciformis Benth. Tree Physiol. 13: 17–27.

    Google Scholar 

  • — &R. R. Wise. 1999. Leaf growth and development in relation to gas exchange inQuercus marilandica Muenchh. J. Pl. Physiol. 154: 302–309.

    CAS  Google Scholar 

  • Close, D. C. 2001. Cold-induced photoinhibition, pigment chemistry, growth and nutrition ofEucalyptus nitens andE. globulus seedlings during establishment. Ph.D. diss., University of Tasmania.

  • —,C. L. Beadle, P. H. Brown &G K. Holz. 2000. Cold-induced photoinhibition affects establishmentof Eucalyptus nitens (Deane and Maiden) Maiden andEucalyptus globulus Labill. Trees 15: 32–41.

    Article  Google Scholar 

  • —,N. W. Davies &C. L. Beadle. 2001a. Temporal variation of tannins (galloylglucoses), flavonols and anthocyanins in leaves ofEucalyptus nitens seedlings: Implications for light attenuation and antioxidant activities. Austral. J. Pl. Physiol. 28: 1–10.

    Google Scholar 

  • —,C. L. Beadle &M. J. Hovenden. 2001b. Cold-induced photoinhibition and foliar pigment dynamics ofEucalyptus nitens seedlings during establishment. Austral. J. Pl. Physiol. 28: 1133–1141.

    Google Scholar 

  • ——,G K. Holz &P. H. Brown. 2002. Effect of shadecloth tree shelters on cold-induced photoinhibition, foliar anthocyanin and growth ofEucalyptus globulus Labill. andE. nitens (Deane and Maiden) Maiden seedlings during establishment. Austral. J. Bot. 50: 15–20.

    Article  Google Scholar 

  • Coley, P. D. &T. M. Aide. 1989. Red coloration of tropical young leaves: Apossible antifungal defence? J. Trop. Ecol. 5: 293–300.

    Google Scholar 

  • — &T. A. Kursar. 1996. Anti-herbivore defenses of young tropical leaves: Physiological constraints and ecological trade-offs. Pp. 305–335in S. S. Mulkey, R. L. Chazdon & A. P. Smith (eds.), Tropical forest plant ecophysiology. Chapman & Hall, New York.

    Google Scholar 

  • Costa-Arbulu, C., E. Gianoli, W. L. Gonzales &H. M. Niemeyer. 2001. Feeding by the aphidSipha flava produces a reddish spot on leaves ofSorghum halapense: an induced defense? J. Chem. Ecol. 27: 273–283.

    Article  PubMed  CAS  Google Scholar 

  • Cristie, P. J., M. R. Alfenito &V. Walbot. 1994. Impact of low temperature stress on phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194: 541–549.

    Article  Google Scholar 

  • Demmig-Adams, B. &W. W. Adams III. 1992. Photoprotection and other responses of plants to high light stress. Annual Rev. Pl. Physiol. P1. Molec. Biol. 43: 599–626.

    Article  CAS  Google Scholar 

  • Dodd, I. C., C. Critchley, G S. Woodall &G R. Stewart. 1998. Photoinhibition in differently coloured juvenile leaves ofSyzygium species. J. Exp. Bot. 49: 1437–1445.

    Article  CAS  Google Scholar 

  • Drumm-Herrel, H. &H. Mohr. 1985. Photostability of seedlings differing in their potential to synthesize anthocyanin. Physiol. Pl. (Copenhagen) 64: 60–66.

    Article  CAS  Google Scholar 

  • Feild, T. S., D. W. Lee &N. M. Holbrook. 2001. Why leaves turn red in autumn: The role of anthocyanins in senescing leaves of red-osier dogwood. Pl. Physiol. (Lancaster) 127: 566–574.

    Article  CAS  Google Scholar 

  • Foot, J. P., S. J. M. Caporn, J. A. Lee &T. W. Ashenden. 1996. The effect of long term ozone fumigation on the growth, physiology and frost sensitivity ofCalluna vulgaris. New Phytol. 133: 503–511.

    Article  CAS  Google Scholar 

  • Gould, K. S. &B. D. Quinn. 1999. Do anthocyanins protect leaves of New Zealand native species from UV-B? New Zealand J. Bot. 37: 175–178.

    Google Scholar 

  • —,D. N. Kuhn, D. W. Lee &S. F. Oberbauer. 1995. Why leaves are sometimes red. Nature 378: 241–242.

    Article  CAS  Google Scholar 

  • —,K. R. Markham, R. H. Smith &J. J. Goris. 2000. Functional role of anthocyanins in the leaves ofQuintinia serrata A. Cunn. J. Exp. Bot. 51: 1107–1115.

    Article  CAS  Google Scholar 

  • Grace, S. C., B. A. Logan &W. W. Adams III. 1998. Seasonal differences in foliar content of chlorogenic acid, a phenylpropanoid antioxidant, inMahonia repens. Pl. Cell Environ. 21: 513–521.

    Article  CAS  Google Scholar 

  • Hammerschmidt, R. &R. L. Nicholson. 1977. Resistance of maize anthracnose: Changes in host phenols and pigments. Phytopathology 67: 251–258.

    CAS  Google Scholar 

  • Heim, D., R. L. Nicholson, S. F. Pascholati, A. E. Hagerman &W. Billett. 1983. Etiolated maize mesocotyls: A tool for investigating disease interactions. Phytopathology 73: 424–428.

    Google Scholar 

  • Hipskind, J., K. Wood &R. L. Nicholson. 1996. Localised stimulation of anthocyanin accumulation and delineation of pathogen ingress in maize genetically resistant toBiplaris maydis race O. Physiol. & Molec. Pl. Pathol. 49: 247–256.

    Article  CAS  Google Scholar 

  • Hoch, W. A., E. L. Zeldin &B. H. McCown. 2001. Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol. 21: 1–8.

    PubMed  CAS  Google Scholar 

  • Hodges, D. M. &C. Nozzolillo. 1996. Anthocyanin and anthocyanoplast content of cruciferous seedlings subjected to mineral nutrient deficiencies. J. Pl. Physiol. 147: 749–754.

    CAS  Google Scholar 

  • Isman, M. B. &S. S. Duffey. 1982. Toxicity of tomato phenolic compounds to the fruitworm,Heliothis zea. Entomologia Experimentalis et Applicata 31: 370–376.

    CAS  Google Scholar 

  • Jayakumar, M., M. Eyini, P. Selvinthangadurai, K. Lingakumar, A. Premkumar &G Kulandaivelu. 1999. Changes in pigment composition and photosynthetic activity of aquatic fern (Azolla microphylla Kaulf.) exposed to low doses of UV-C (254 nm) radiation. Photosynthetica 37: 33–38.

    Article  CAS  Google Scholar 

  • Jordan, D. N. &W. K. Smith. 1994. Energy balance analysis of night-time leaf temperatures and frost formation in a subalpine environment. Agric. Forest Meteorol. 77: 359–372.

    Article  Google Scholar 

  • ——. 1995. Microclimate factors influencing the frequency and duration of growth season frost for sub-alpine plants. Agric. Forest Meteorol. 77: 17–30.

    Article  Google Scholar 

  • Kakegawa, K., Y. Kaneko, E. Hattori, K. Koike &K. Takeda. 1987. Cell cultures ofCentaurea cyanus produce malonated anthocyanin in UV light. Phytochemistry 26: 2261–2263.

    Article  CAS  Google Scholar 

  • Karim, A., K. Koeda &N. Nii. 1999. Changes in anatomical features, pigment content and photosynthetic activity related to age of ‘Irwin’ mango leaves. J. Jap. Soc. Hort. Sci. 68: 1090–1098.

    Google Scholar 

  • Krause, G H., A. Virgo &K. Winter. 1995. High susceptibility to photoinhibition of young leaves of tropical forest trees. Planta 197: 583–591.

    Article  CAS  Google Scholar 

  • —,C. Schmude, H. Garden, O. Y. Koroleva &K. Winter. 1999. Effects of solar ultraviolet radiation on the potential efficiency of photosystem II in leaves of tropical plants. Pl. Physiol. 121: 1349–1358.

    Article  CAS  Google Scholar 

  • Krol, M., G. R. Gray, V. M. Hurry, L. Öquist, L. Malek &N. P. A. Huner. 1995. Low temperature stress and photoperiod effect an increased tolerance to photoinhibition inPinus banksiana seedlings. Canad. J. Bot. 73: 1119–1127.

    Article  CAS  Google Scholar 

  • Kumar, V. &S. S. Sharma. 1999. Nutrient deficiency-dependent anthocyanin development inSpirodela polyrhiza L. Schied. Biol. Pl. 42: 621–624.

    Article  CAS  Google Scholar 

  • Kursar, T. A. &P. D. Coley. 1992. Delayed development of the photosynthetic apparatus in tropical rain forest species. Func. Ecol. 6: 411–422.

    Article  Google Scholar 

  • Lawanson, A. O., B. B. Akindele, P. B. Fasalojo &B. L. Akpe. 1972. Time-course of anthocyanin formation during deficiencies of nitrogen, phosphorus and potassium in seedlings ofZea mays Linn. var. E. S. 1. Z. Pflanzenphysiol. 66: 251–253.

    Google Scholar 

  • —,A. Ojeniyi, C. E. Nduka &S. O. Osueke. 1975. Distribution of cyanidin-3-galactoside and pelargonidin-3-glucoside in mineral-deficient maize seedlings. Phyton 33: 187–191.

    CAS  Google Scholar 

  • Lee, D. W. &T. M. Collins. 2001. Phylogenetic and ontogenetic influences on the distribution of anthocyanins and betacyanins in leaves of tropical plants. Int. J. Pl. Sci. 162: 1141–1153.

    Article  CAS  Google Scholar 

  • — &J. B. Lowry. 1980. Young-leaf anthocyanin and solar ultraviolet. Biotrop. 12: 75–76.

    Article  Google Scholar 

  • —,S. Brammeler &A. P. Smith. 1987. The selective advantages of anthocyanins in developing leaves of mango and cacao. Biotropica 19: 40–49.

    Article  Google Scholar 

  • Leng, P., H. Itamura &H. Yamamura. 1993. Freezing tolerance of several Diospyros species and khaki cultivars as related to anthocyanin formation. J. Jap. Soc. Hort. Sci. 61: 795–804.

    CAS  Google Scholar 

  • Lindoo, S. J. &M. M. Caldwell. 1978. Ultraviolet-B radiation-induced inhibition of leaf expansion and promotion of anthocyanin production. Pl. Physiol. 61: 278–282.

    CAS  Google Scholar 

  • Logan, B. A., D. H. Barker, W. W. Adams III &B. Demmig-Adams. 1997. The response of xanthophyll cycle-dependent energy dissipation inAlocasia brisbanesis to sunflecks in a subtropical rainforest. Austral. J. Pl. Physiol. 24: 27–33.

    Google Scholar 

  • —,B. Demmig-Adams &T. N. Rosenstiel. 1999. Effect of nitrogen limitation on foliar antioxidants in relationship to other metabolic characteristics. Planta 209: 213–220.

    Article  PubMed  CAS  Google Scholar 

  • Mach, J. M., A. R. Castillo, R. Hoogstraten &J. T. Greenberg. 2001. TheArabidopsis-accderated cell-death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc. Natl. Acad. U.S.A. 98: 771–776.

    Article  CAS  Google Scholar 

  • Matile, P. 2000. Biochemistry of Indian summer: Physiology of autumnal leaf coloration. Exp. Geront. 35: 145–158.

    Article  CAS  Google Scholar 

  • —,B. Flach &B. Eller. 1992. Spectral optical properties, pigments and optical brighteners in autumn leaves ofGinko boloba L. Bot. Acta 105: 13–17.

    CAS  Google Scholar 

  • Mendez, M., D. Gwynn Jones &Y. Manetas. 1999. Enhanced UV-B radiation under field conditions increases anthocyanin and reduces the risk of photoinhibition but does not affect growth in the carnivorous plantPinguicula vulgaris. New Phytol. 144: 275–282.

    Article  CAS  Google Scholar 

  • Mohammed, G H. &W. C. Parker. 1999. Photosynthetic acclimation in eastern hemlock [Tsuga canadensis (L.) Carr.] seedlings following transfer of shade-grown seedlings to high light. Trees 13: 117–124.

    Google Scholar 

  • Müller, P., X-P. Li &K. K. Niyogi. 2001. Non-photochemical quenching: A response to excess light energy. Pl. Physiol. 125: 1558–1566.

    Article  Google Scholar 

  • Neill, S. &K. S. Gould. 1999. Optical properties of leaves in relation to anthocyanin concentration and distribution. Canad. J. Bot. 77: 1777–1782.

    Article  Google Scholar 

  • Nii, N., T. Watanabe, K. Yamaguchi &M. Nishimura. 1995. Changes of anatomical features, photosynthesis and ribulose bisphosphate carboxylase-oxygenase content of mango leaves. Ann. Bot., n.s., 76 (Oxford): 649–656.

    Article  CAS  Google Scholar 

  • Nishio, J. N., J. D. Sun &T. C. Vogelmann. 1993. Carbon fixation gradients across spinach leaves do not follow internal light gradients. Pl. Cell 5: 953–961.

    CAS  Google Scholar 

  • Nittler, L. W. &T. J. Kenny. 1976. Effect of ammonium to nitrate ratio on growth and anthocyanin development of perennial ryegrass cultivars. Agron. J. 68: 680–682.

    CAS  Google Scholar 

  • Niyogi, K. K. 1999. Photoprotection revisited: Genetic and molecular approaches. Annual Rev. P1. Physiol. Pl. Molec. Biol. 50: 333–359.

    Article  CAS  Google Scholar 

  • Nozzolillo, C., P. Isabelle &G. Das. 1989. Seasonal changes in phenolic constituents of jack pine seedlings (Pinus banksiana) in relation to the purpling phenomenon. Canad. J. Bot. 68: 2010–2017.

    Google Scholar 

  • Oren-Shamir, M. &A. Levi-Nissim. 1997. UV-light effect on the leaf pigmentation ofCotinus coggygria ‘Royal Purple’. Sci. Hort. (Amsterdam) 71: 59–66.

    Article  Google Scholar 

  • Pietrini, F. &A. Massacci. 1998. Leaf anthocyanin content changes inZea mays L. grown at low temperature: Significance for the relationship between quantum yield of PS II and the apparent quantum yield of CO2 assimilation. Photosyn. Res. 58: 213–219.

    Article  CAS  Google Scholar 

  • Polle, A. &H. Rennenberg. 1996. Photooxidative stress in trees. Pp. 199–217in C. H. Foyer & P. M. Mullineaux (eds.), Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, London.

    Google Scholar 

  • —,M. Mössnang & A. von Schönborn. 1992. Field studies on Norway spruce trees at high altitudes, I: Mineral, pigment and soluble protein contents of the needles as affected by climate and pollution. New Phytol. 121: 89–97.

    Article  CAS  Google Scholar 

  • Quiros, C. F., M. A. Stevens, C. M. Rick &M. L. Kok-Yokomi. 1977. Resistance in tomato to the pink form of the potato aphid (Macrosiphum euphorbiae Thomas): The role of anatomy, epidermis hairs, and foliage composition. J. Amer. Soc. Hort. Sci. 102: 166–171.

    CAS  Google Scholar 

  • Rice-Evans, C. A., N. J. Miller &G Paganga. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol. & Med. 20: 933–956.

    Article  CAS  Google Scholar 

  • Robinson, S. A. &C. B. Osmond. 1994. Internal gradients of chlorophyll and carotenoid pigments in relation to photoprotection in thick leaves of plants with Crassulacean acid metabolism. Austral. J. Pl. Physiol. 21:497–506.

    Article  CAS  Google Scholar 

  • —,C. E. Lovelock &C. B. Osmond. 1993. Wax as a mechanism for protection against photoinhibition—A study ofCotyledon orbiculata. Bot. Acta 106: 307–312.

    CAS  Google Scholar 

  • Ronchi, A., G Farina, F. Gozzo &C. Tonelli. 1997. Effects of a triazolic fungicide on maize plant metabolism: Modifications of transcript abundance in resistance-related pathways. Pl. Sci. 130: 51–62.

    Article  CAS  Google Scholar 

  • Salisbury, F. B. &C. W. Ross. 1992. Plant Physiology. Ed. 4. Wadsworth Publishing Co., Belmont, CA.

    Google Scholar 

  • Satyanarayana, E., S. V. S. Shastry &P. R. R. Reddy. 1987. Relationship of resistance to rice gall midge (Pachydiplosis oryzae Wood-Mason) with tiller number, plant height and pigmentation in rice. Ann. Agric. Res. 8: 4–7.

    Google Scholar 

  • Sherwin, H. W. &M. Farrant. 1998. Protection mechanisms against excess light in the resurrection plantsCraterostigma wilmsii andXerophyta viscosa. Pl. Growth Regulator 24: 203–210.

    Article  CAS  Google Scholar 

  • Skillman, J. B., B. R. Strain &C. B. Osmond. 1996. Contrasting patterns of photosynthetic acclimation and photoinhibition in two evergreen herbs from a winter deciduous forest. Oecologia 107: 446–455.

    Article  Google Scholar 

  • Spunda, V., J. Kalina, J. Naus, R. Kuropatwa, M. Maslan &M. Marek. 1993. Responses of photosystem II photochemistry and pigment composition in needles of Norway spruce saplings to increased radiation level. Photosynthetica 28: 401–413.

    CAS  Google Scholar 

  • Stone, C., L. Chisholm &N. Coops. 2001. Spectral reflectance characteristics of eucalypt foliage damaged by insects. Austral. J. Bot. 49: 687–698.

    Article  Google Scholar 

  • Sugiharto, B., K. Miyata, H. Nakamoto, H. Sasakawa &T. Sugiyama. 1990. Regulation of expression of carbon-assimilating enzymes by nitrogen in maize leaf. Pl. Physiol. 92: 963–969.

    Article  CAS  Google Scholar 

  • Sun, J. D., J. N. Nishio &T. C. Vogelmann. 1998. Green light drives CO2 fixation deep within leaves. Pl. Cell Physiol. 39: 1020–1026.

    CAS  Google Scholar 

  • Tan, S. C. 1979. Relationships and interactions between phenylalanine ammonia-lyase (PAL), phenylalanine ammonia-lyase inactivating system (PAS-IS), and anthocyanin in apples. J. Amer. Soc. Hort. Sci. 104: 581–586.

    CAS  Google Scholar 

  • Terashima, I. &J. R. Evans. 1988. Effects of light and nitrogen nutrition in spinach. Pl. Cell Physiol. 29: 143–155.

    CAS  Google Scholar 

  • Tevini, M., J. Braun &G Pieser. 1991. The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation. Photochem. & Photobiol. 53: 329–333.

    Article  CAS  Google Scholar 

  • Thiele, A., G H. Krause &K. Winter. 1998.In situ study of photoinhibition of photosynthesis and xanthophyll cycle activity in plants growing in natural gaps of the tropical forest. Austral. J. PI. Physiol. 25: 189–195.

    Google Scholar 

  • Toivonen, A., R. Rikala, T. Repo &H. Smolander. 1991. Autumn colouration of first yearPinus sylvestris seedlings during frost hardening. Scanf. J. Forest Res. 6: 31–39.

    Google Scholar 

  • Tuohy, J. M. &J. S. Choinski. 1990. Comparative photosynthesis in developing leaves ofBrachystegia spiciformis Benth. J. Exp. Bot. 41: 919–923.

    Article  CAS  Google Scholar 

  • Wang, H., G Cao &R. L. Prior. 1997. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 45: 304–309.

    Article  CAS  Google Scholar 

  • Woodall, G S. &G R. Stewart. 1998. Do anthocyanins play a role in UV protection of the red juvenile leaves ofSyzgium? J. Exp. Bot. 49: 1447–1450.

    Article  CAS  Google Scholar 

  • —,I. C. Dodd &G R. Stewart. 1998. Contrasting leaf development within the genusSyzygium. J. Exp. Bot. 49: 79–87.

    Article  CAS  Google Scholar 

  • Yamasaki, H. 1997. A function of colour. Trends Pl. Sci. 2: 7–8.

    Article  Google Scholar 

  • —,H. Uefuji &Y. Sakihama. 1996. Bleaching of the red anthocyanin induced by Superoxide radical. Arch. Biochem. Biophys. 332: 183–186.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Close, D.C., Beadle, C.L. The ecophysiology of foliar anthocyanin. Bot. Rev 69, 149–161 (2003). https://doi.org/10.1663/0006-8101(2003)069[0149:TEOFA]2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1663/0006-8101(2003)069[0149:TEOFA]2.0.CO;2

Keywords

Navigation