Skip to main content
Log in

Apoptosis induction of colorectal cancer cells HTL-9 in vitro by the transformed products of soybean isoflavones by Ganoderma lucidum

灵芝菌生物转化大豆异黄酮及其产物对结直肠癌细胞HTL-9 的体外凋亡诱导研究

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Soybean isoflavones have been one of the potential preventive candidates for antitumor research in recent years. In this paper, we first studied the transformation of soybean isoflavones with the homogenized slurry of Ganoderma lucidum. The resultant transformed products (TSI) contained (703.21±4.35) mg/g of genistein, with transformed rates of 96.63% and 87.82% of daidzein and genistein, respectively, and TSI also could enrich the bioactive metabolites of G. lucidum. The antitumor effects of TSI on human colorectal cancer cell line HTL-9, human breast cancer cell line MCF-7, and human immortalized gastric epithelial cell line GES-1 were also studied. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay showed that TSI could dramatically reduce the viability rates of HTL-9 cells and MCF-7 cells without detectable cytotoxicity on GES-1 normal cells when the TSI concentration was lower than 100 μg/ml. With 100 μg/ml of TSI, HTL-9 cells were arrested in the G1 phase, and late-apoptosis was primarily induced, accompanied with partial early-apoptosis. TSI could induce primarily earlyapoptosis by arresting cells in the G1 phase of MCF-7 cells. For HTL-9 cells, Western-blot and reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed that TSI (100 μg/ml) can up-regulate the expression of Bax, Caspase-3, Caspase-8, and cytochrome c (Cyto-c), indicating that TSI could induce cell apoptosis mainly through the mitochondrial pathway. In addition, the expression of p53 was up-regulated, while the expression of Survivin and nuclear factor κB (NF-κB) was down-regulated. All these results showed that TSI could induce apoptosis of HTL-9 cells by the regulation of multiple apoptosis-related genes.

中文概要

目的

通过灵芝菌生物转化大豆异黄酮,得到富含苷元及灵芝活性成分的多因子转化产物,并研究了转化产物对结直肠癌细胞HTL-9 的体外凋亡诱导,初步探讨转化产物的抗癌活性及机理。

创新点

灵芝是一种珍贵的药用真菌,大豆异黄酮的苷元物质也具有重要的药理活性,本文首次利用灵芝菌液体发酵的匀浆液生物转化大豆异黄酮,所得到的产物中大豆苷元与染料木素转化率高,同时还富集了灵芝菌的活性成分,并对转化产物的抗癌活性及机理进行了初步探讨。

方法

首先利用灵芝菌液体发酵的匀浆体系生物转化大豆异黄酮(图1)。其次,对转化产物的抗癌活性进行研究,主要包括对癌细胞存活率(图2)、细胞凋亡(图3)及细胞周期分布(图4)的影响。最后,利用蛋白质印迹(Western-blot)与逆转录聚合酶链反应(RT-PCR)技术对凋亡相关的基因和蛋白进行检测(图5 和表2),初步探讨转化产物的体外抗癌机理。

结论

本实验结果显示,转化产物中大豆苷元及染料木素的转化率分别为96.63%和87.82%,其中染料木素的含量可达(703.21±4.35) mg/g,同时转化产物中还富含了灵芝菌的活性成分。其次,对转化产物抗癌活性研究发现,其能有效降低HTL-9 细胞的存活率,可通过将细胞阻滞于G1 期而诱导细胞晚期凋亡。此外,转化产物(100 μg/ml)还可明显上调Bax、Caspase-3、Caspase-8、Cyto-c和p53 的表达量,而Survivin 和NF-κB 表达量发生明显下调。结果表明,转化产物主要通过线粒体途径诱导细胞凋亡,但同时还调控多个与凋亡相关的基因。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarnink, A.J.A., Verstegen, M.W.A., 2007. Nutrition, key factor to reduce environmental load from pig production. Livest. Sci., 109(1-3):194–203. http://dx.doi.org/10.1016/j.livsci.2007.01.112

    Article  Google Scholar 

  • AOAC, 2006. Official Methods of Analysis, 18th Ed. Association of Official Analytical Chemists, Arlington, VA, USA.

    Google Scholar 

  • Banhazi, T.M., Seedorf, J., Rutley, D.L., et al., 2008. Identification of risk factors for sub-optimal housing conditions in Australian piggeries: Part 2. Airborne pollutants. J. Agric. Saf. Health, 14(1):21–39. http://dx.doi.org/10.13031/2013.24122

    Article  CAS  PubMed  Google Scholar 

  • Brown, J.A., Cline, T.R., 1974. Urea excretion in the pig: an indicator of protein quality and amino acid requirements. J. Nutr., 104(5):542–545.

    CAS  PubMed  Google Scholar 

  • Canh, T.T., Sutton, A.L., Aarnink, A.J., et al., 1998. Dietary carbohydrates alter the fecal composition and pH and the ammonia emission from slurry of growing pigs. J. Anim. Sci., 76(7):1887–1895. http://dx.doi.org/10.2527/1998.7671887x

    Article  CAS  PubMed  Google Scholar 

  • Canibe, N., Jensen, B.B., 2003. Fermented and nonfermented liquid feed to growing pigs: effect on aspects of gastrointestinal ecology and growth performance. J. Anim. Sci., 81(8):2019–2031. http://dx.doi.org/10.2527/2003.8182019x

    Article  CAS  PubMed  Google Scholar 

  • Chiavegato, M.B., Powers, W., Palumbo, N., 2015. Ammonia and greenhouse gas emissions from housed Holstein steers fed different levels of diet crude protein. J. Anim. Sci., 93(1):395–404. http://dx.doi.org/10.2527/jas.2014-8167

    Article  CAS  PubMed  Google Scholar 

  • Cho, J.H., Chen, Y.J., Min, B.J., et al., 2008. Effects of reducing dietary crude protein on growth performance, odor gas emission from manure and blood urea nitrogen and IGF-1 concentrations of serum in nursery pigs. Anim. Sci. J., 79(4):453–459. http://dx.doi.org/10.1111/j.1740-0929.2008.00549.x

    Article  CAS  Google Scholar 

  • Dumont, E., Hamon, L., Lagadec, S., et al., 2014. NH3 biofiltration of piggery air. J. Environ. Manage., 140:26–32. http://dx.doi.org/10.1016/j.jenvman.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  • Griess, P., 1879. Griess reagent: a solution of sulphanilic acid and α-naphthylamine in acetic acid which gives a pink colour on reaction with the solution obtained after decomposition of nitrosyl complexes. Chem. Ber., 12:427 (in German).

    Google Scholar 

  • Groenestein, C.M., Oosthoek, J., van Faassen, H.G., 1993. Microbial Processes in Deep-Litter Systems for Fattening Pigs and Emission of Ammonia, Nitrous Oxide and Nitric Oxide. EAAP Publication, the Netherlands.

    Google Scholar 

  • Hamscher, G., Pawelzick, H.T., Sczesny, S., et al., 2003. Antibiotics in dust originating from a pig-fattening farm: a new source of health hazard for farmers? Environ. Health Perspect.,}} 111(13):1590–1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes, E.T., Leek, A.B.G., Curran, T.P., et al., 2004. The influence of diet crude protein level on odour and ammonia emissions from finishing pig houses. Bioresour. Technol., 91(3):309–315. http://dx.doi.org/10.1016/S0960-8524(03)00184-6

    Article  CAS  PubMed  Google Scholar 

  • Hobbs, P.J., Misselbrook, T.H., Pain, B.F., 1997. Characterisation of odorous compounds and emissions from slurries produced from weaner pigs fed dry feed and liquid diets. J. Sci. Food Agric., 73(4):437–445. http://dx.doi.org/10.1002/(SICI)1097-0010(199704)73:4<437::AID-JSFA748<3.0.CO;2-7

    Article  CAS  Google Scholar 

  • Hoff, S.J., Bundy, D.S., Nelson, M.A., et al., 2006. Emissions of ammonia, hydrogen sulfide, and odor before, during, and after slurry removal from a deep-pit swine finisher. J. Air Waste Manag. Assoc., 56(5):581–590. http://dx.doi.org/10.1080/10473289.2006.10464472

    Article  CAS  PubMed  Google Scholar 

  • Ilea, R.C., 2009. Intensive livestock farming: global trends, increased environmental concerns, and ethical solutions. J. Agric. Environ. Ethics, 22(2):153–167. http://dx.doi.org/10.1007/s10806-008-9136-3

    Article  Google Scholar 

  • Jones, C.K., DeRouchey, J.M., Nelssen, J.L., et al., 2010. Effects of fermented soybean meal and specialty animal protein sources on nursery pig performance. J. Anim. Sci., 88(5):1725–1732. http://dx.doi.org/10.2527/jas.2009-2110

    Article  CAS  PubMed  Google Scholar 

  • Kohn, R.A., Dinneen, M.M., Russek-Cohen, E., 2005. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs and rats. J. Anim. Sci., 83(4):879–889. http://dx.doi.org/10.2527/2005.834879x

    Article  CAS  PubMed  Google Scholar 

  • Krupa, S.V., 2003. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environ. Pollut., 124(2): 179–221. http://dx.doi.org/10.1016/S0269-7491(02)00434-7

    Article  CAS  PubMed  Google Scholar 

  • Le, P.D., Aarnink, A.J.A., Jongbloed, A.W., et al., 2008. Interactive effects of dietary crude protein and fermentable carbohydrate levels on odour from pig manure. Livest. Sci., 114(1):48–61. http://dx.doi.org/10.1016/j.livsci.2007.04.009

    Article  Google Scholar 

  • Leonard, R.H., 1963. Quantitative range of Nessler’s reaction with ammonia. Clin. Chem., 9(4):417–422.

    CAS  Google Scholar 

  • Loehr, R.C., Prakasam, T.B.S., Srinath, E.G., et al., 1973. Development and Demonstration of Nutrient Removal from Animal Wastes. Office of Research and Monitoring. Environmental Protection Agency. US Government Printing Office, Washington, DC.

    Google Scholar 

  • Lynch, M.B., O'Shea, C.J., Sweeney, T., et al., 2008. Effect of crude protein concentration and sugar-beet pulp on nutrient digestibility, nitrogen excretion, intestinal fermentation and manure ammonia and odour emissions from finisher pigs. Animal, 2(3):425–434. http://dx.doi.org/10.1017/S1751731107001267

    Article  CAS  PubMed  Google Scholar 

  • Min, X., Xiao, J., Kawasaki, K., et al., 2014. Transfer of blood urea nitrogen to cecal microbes and nitrogen retention in mature rabbits are increased by dietary fructooligosaccharides. Anim. Sci. J., 85(6):671–677. http://dx.doi.org/10.1111/asj.12205

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, R., Chakraborty, R., Dutta, A., 2016. Role of fermentation in improving nutritional quality of soybean meal—a review. Asian-Aust. J. Anim. Sci., 29(11):1523–1529. http://dx.doi.org/10.5713/ajas.15.0627

    Article  Google Scholar 

  • Murray, I., Parsons, J.W., Robinson, K., 1975. Interrelationships between nitrogen balance, pH and dissolved oxygen in an oxidation ditch treating farm animal waste. Water Res., 9(1):25–30. http://dx.doi.org/10.1016/0043-1354(75)90148-7

    Article  CAS  Google Scholar 

  • NRC (National Research Council), 2012. Nutrient Requirements of Swine, 11th Ed. Natl. Acad. Press, Washington, DC.

  • Patráš, P., Nitrayová, S., Brestenský, M., et al., 2012. Effect of dietary fiber and crude protein content in feed on nitrogen retention in pigs. J. Anim. Sci., 90(Suppl. 4):158–160. http://dx.doi.org/10.2527/jas.53837

    Article  PubMed  Google Scholar 

  • Pedersen, S., Nonnenmann, M., Rautiainen, R., et al., 2000. Dust in pig buildings. J. Agric. Saf. Health, 6(4):261–274. http://dx.doi.org/10.13031/2013.1909

    Article  CAS  PubMed  Google Scholar 

  • Portejoie, S., Martinez, J., Guiziou, F., et al., 2003. Effect of covering pig slurry stores on the ammonia emission processes. Bioresour. Technol., 87(3):199–207. http://dx.doi.org/10.1016/S0960-8524(02)00260-2

    Article  CAS  PubMed  Google Scholar 

  • Renard, J.J., Calidonna, S.E., Henley, M.V., 2004. Fate of ammonia in the atmosphere—a review for applicability to hazardous releases. J. Hazard. Mater., 108(1-2):29–60. http://dx.doi.org/10.1016/j.jhazmat.2004.01.015

    Article  CAS  PubMed  Google Scholar 

  • Rigolot, C., Espagnol, S., Robin, P., et al., 2010. Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part II: effect of animal housing, manure storage and treatment practices. Animal, 4(08):1413–1424. http://dx.doi.org/10.1017/S1751731110000509

    Article  CAS  PubMed  Google Scholar 

  • Shriver, J.A., Carter, S.D., Sutton, A.L., et al., 2003. Effects of adding fiber sources to reduced-crude protein, amino acid-supplemented diets on nitrogen excretion, growth performance, and carcass traits of finishing pigs. J. Anim. Sci., 81(2):492–502. http://dx.doi.org/10.2527/2003.812492x

    Article  CAS  PubMed  Google Scholar 

  • Suiryanrayna, M.V., Ramana, J.V., 2015. A review of the effects of dietary organic acids fed to swine. J. Anim. Sci. Biotechnol., 6(1):45. http://dx.doi.org/10.1186/s40104-015-0042-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Faassen, H.G., van Dijk, H., 1987. Manure as a source of nitrogen and phosphorus in soils. In: van der Meer, H.G., Unwin, R.J., van Dijk, T.A. (Eds.), Animal Manure on Grassland and Fodder Crops. Fertilizer or Waste? Springer Netherlands, p.27–45. http://dx.doi.org/10.1007/978-94-009-3659-1_3

    Chapter  Google Scholar 

  • Vogelzang, P.F., van der Gulden, J.W., Folgering, H., et al., 2000. Longitudinal changes in bronchial responsiveness associated with swine confinement dust exposure. Chest, 117(5):1488–1495. http://dx.doi.org/10.1378/chest.117.5.1488

    Article  CAS  PubMed  Google Scholar 

  • Webb, J., Thorman, R.E., Fernanda-Aller, M., et al., 2014. Emission factors for ammonia and nitrous oxide emissions following immediate manure incorporation on two contrasting soil types. Atmos. Environ., 82:280–287. http://dx.doi.org/10.1016/j.atmosenv.2013.10.043

    Article  CAS  Google Scholar 

  • Wu, L., He, L., Cui, Z., et al., 2015. Effects of reducing dietary protein on the expression of nutrition sensing genes (amino acid transporters) in weaned piglets. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(6):496–502. http://dx.doi.org/10.1631/jzus.B1400259

    Article  CAS  Google Scholar 

  • Ye, Z., Li, B., Cheng, B., et al., 2007. A concrete slatted floor system for separation of faeces and urine in pig houses. Biosyst. Eng., 98(2):206–214. http://dx.doi.org/10.1016/j.biosystemseng.2007.07.007

    Article  Google Scholar 

  • Zhou, C., Hu, J., Zhang, B., et al., 2015. Gaseous emissions, growth performance and pork quality of pigs housed in deep-litter system compared to concrete-floor system. Anim. Sci. J., 86(4):422–427. http://dx.doi.org/10.1111/asj.12311

    Article  CAS  PubMed  Google Scholar 

  • Abbasi, B.H., Stiles, A.R., Saxena, P.K., et al., 2012. Gibberellic acid increases secondary metabolite production in Echinacea purpurea hairy roots. Appl. Biochem. Biotechnol., 168(7):2057–2066. http://dx.doi.org/10.1007/s12010-012-9917-z

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth, E.A., Gillespie, K.M., 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc., 2(4): 875–877. http://dx.doi.org/10.1038/nprot.2007.102

    Article  CAS  PubMed  Google Scholar 

  • Benzie, I.F.F., Strain, J.J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 239(1):70–76. http://dx.doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  • Cartea, M.E., Velasco, P., 2008. Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem. Rev., 7(2):213–229. http://dx.doi.org/10.1007/s11101-007-9072-2

    Article  CAS  Google Scholar 

  • Castañeda-Ovando, A., Pacheco-Hernández, M.D.L., Páez-Hernández, M.E., et al., 2009. Chemical studies of anthocyanins: a review. Food Chem., 113(4):859–871. http://dx.doi.org/10.1016/j.foodchem.2008.09.001

    Article  CAS  Google Scholar 

  • Dinkova-Kostova, A.T., Kostov, R.V., 2012. Glucosinolates and isothiocyanates in health and disease. Trends Mol. Med., 18(6):337–347. http://dx.doi.org/10.1016/j.molmed.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  • Fahey, J.W., Zhang, Y.S., Talalay, P., 1997. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Acad. Sci. USA, 94(19):10367–10372. http://dx.doi.org/10.1073/pnas.94.19.10367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frerigmann, H., Gigolashvili, T., 2014. MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol. Plant, 7(5):814–828. http://dx.doi.org/10.1093/mp/ssu004

    Article  CAS  PubMed  Google Scholar 

  • Guo, R., Qian, H., Shen, W., et al., 2013a. BZR1 and BES1 participate in regulation of glucosinolate biosynthesis by brassinosteroids in Arabidopsis. J. Exp. Bot., 64(8):2401–2412. http://dx.doi.org/10.1093/jxb/ert094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, R., Yuan, G., Wang, Q., 2013b. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 14(2):124–131. http://dx.doi.org/10.1631/jzus.B1200096

    Article  CAS  Google Scholar 

  • Guo, R., Shen, W., Qian, H., et al., 2013c. Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana. J. Exp. Bot., 64(18):5707–5719. http://dx.doi.org/10.1093/jxb/ert348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, X., He, R., Liao, X., et al., 2014. Effect of exogenous gibberellin on reserve accumulation during the seed filling stage of oilseed rape. Genet. Mol. Res., 13(2):2827–2839. http://dx.doi.org/10.4238/2014.January.22.7

    Article  CAS  PubMed  Google Scholar 

  • Huseby, S., Koprivova, A., Lee, B.R., et al., 2013. Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis. J. Exp. Bot., 64(4):1039–1048. http://dx.doi.org/10.1093/jxb/ers378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, W., Sheng, Q., Jiang, Y., et al., 2004. Effects of 1-methylcyclopropene and gibberellic acid on ripening of Chinese jujube (Zizyphus jujuba M) in relation to quality. J. Sci. Food Agric., 84(1):31–35. http://dx.doi.org/10.1002/jsfa.1594

    Article  CAS  Google Scholar 

  • Kim, H.H., Kwon, D.Y., Uddin, M.R., et al., 2013. Influence of auxins on glucosinolate biosynthesis in hairy root cultures of Broccoli (Brassica oleracea var. italica). Asian J. Chem., 25(11):6099–6101.

    CAS  Google Scholar 

  • Kim, H.J., Chen, F., Wang, X., et al., 2006. Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.). J. Agric. Food Chem., 54(19):7263–7269. http://dx.doi.org/10.1021/jf060568c

    Article  CAS  PubMed  Google Scholar 

  • Kumar, G., Tuli, H.S., Mittal, S., et al., 2015. Isothiocyanates: a class of bioactive metabolites with chemopreventive potential. Tumor Biol., 36(6):4005–4016. http://dx.doi.org/10.1007/s13277-015-3391-5

    Article  CAS  Google Scholar 

  • Liang, Z., Ma, Y., Xu, T., et al., 2013. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in Salvia miltiorrhiza Bunge hairy roots. PLoS ONE, 8(9):e72806. http://dx.doi.org/10.1371/journal.pone.0072806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreti, E., Povero, G., Novi, G., et al., 2008. Gibberellins, jasmonate and abscisic acid modulate the sucroseinduced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol., 179(4):1004–1016. http://dx.doi.org/10.1111/j.1469-8137.2008.02511.x

    Article  CAS  PubMed  Google Scholar 

  • Mazumder, A., Dwivedi, A., du Plessis, J., 2016. Sinigrin and its therapeutic benefits. Molecules, 21(4):416. http://dx.doi.org/10.3390/molecules21040416

    Article  PubMed  CAS  Google Scholar 

  • Miao, H., Wei, J., Zhao, Y., et al., 2013. Glucose signalling positively regulates aliphatic glucosinolate biosynthesis. J. Exp. Bot., 64(4):1097–1109. http://dx.doi.org/10.1093/jxb/ers399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naeem, N., Ishtiaq, M., Khan, P., et al., 2001. Effect of gibberellic acid on growth and yield of tomato cv. Roma. J. Biol. Sci., 1(6):448–450. http://dx.doi.org/10.3923/jbs.2001.448.450

    Article  Google Scholar 

  • Park, C.H., Yeo, H.J., Park, Y.J., et al., 2017. Influence of indole-3-acetic acid and gibberellic acid on phenylpropanoid accumulation in common buckwheat (Fagopyrum esculentum Moench) sprouts. Molecules, 22(3):374. http://dx.doi.org/10.3390/molecules22030374

    Article  CAS  Google Scholar 

  • Podsędek, A., 2007. Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT-Food Sci. Technol., 40(1):1–11. http://dx.doi.org/10.1016/j.lwt.2005.07.023

    Article  CAS  Google Scholar 

  • Schweizer, F., Fernándezcalvo, P., Zander, M., et al., 2013. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell, 25(8):3117–3132. http://dx.doi.org/10.1105/tpc.113.115139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheen, J., 2014. Master regulators in plant glucose signaling networks. J. Plant Biol., 57(2):67–79. http://dx.doi.org/10.1007/s12374-014-0902-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, B., Liu, N., Zhao, Y., et al., 2011. Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties. Food Chem., 124(3):941–947. http://dx.doi.org/10.1016/j.foodchem.2010.07.031

    Article  CAS  Google Scholar 

  • Sun, B., Yan, H., Zhang, F., et al., 2012. Effects of plant hormones on main health-promoting compounds and antioxidant capacity of Chinese kale. Food Res. Int., 48(2):359–366. http://dx.doi.org/10.1016/j.foodres.2012.04.021

    Article  CAS  Google Scholar 

  • Teng, S., Keurentjes, J., Bentsink, L., et al., 2005. Sucrosespecific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol., 139(4):1840–1852. http://dx.doi.org/10.1104/pp.105.066688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Gu, H., Yu, H., et al., 2012. Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China. Food Chem., 133(3):735–741. http://dx.doi.org/10.1016/j.foodchem.2012.01.085

    CAS  Google Scholar 

  • Wei, J., Miao, H., Wang, Q., 2011. Effect of glucose on glucosinolates, antioxidants and metabolic enzymes in Brassica sprouts. Sci. Hort., 129(4):535–540. http://dx.doi.org/10.1016/j.scienta.2011.04.026

    Article  CAS  Google Scholar 

  • Yuan, G., Sun, B., Yuan, J., et al., 2009. Effects of different cooking methods on health-promoting compounds of broccoli. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 10(8):580–588. http://dx.doi.org/10.1631/jzus.B0920051

    Article  Google Scholar 

  • Yuan, G., Bo, S., Jing, Y., et al., 2010a. Effect of 1-methylcyclopropene on shelf life, visual quality, antioxidant enzymes and health-promoting compounds in broccoli florets. Food Chem., 118(3):774–781. http://dx.doi.org/10.1016/j.foodchem.2009.05.062

    Article  CAS  Google Scholar 

  • Yuan, G., Wang, X., Guo, R., et al., 2010b. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem., 121(4):1014–1019. http://dx.doi.org/10.1016/j.foodchem.2010.01.040

    Article  CAS  Google Scholar 

  • Zang, Y., Ge, J., Huang, L., et al., 2015. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp.pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(8):696–708. http://dx.doi.org/10.1631/jzus.B1400370

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhen, L., Tan, X., et al., 2014. The involvement of hexokinase in the coordinated regulation of glucose and gibberellin on cell wall invertase and sucrose synthesis in grape berry. Mol. Biol. Rep., 41(12):7899–7910. http://dx.doi.org/10.1007/s11033-014-3683-7

    Article  CAS  PubMed  Google Scholar 

  • Al-Fatlawi, A.A., Abbas, A., Zafaryab, M., et al., 2014. Rhein induced cell death and apoptosis through caspase dependent and associated with modulation of p53, Bcl-2/Bax ratio in human cell lines. Int. J. Pharm. Pharmaceut. Sci., 6(2):515–519.

    Google Scholar 

  • Andlauer, W., Kolb, J., Stehle, P., et al., 2000. Absorption and metabolism of genistein in isolated rat small intestine. J. Nutr., 130(4):843–846.

    CAS  PubMed  Google Scholar 

  • Baglia, M.L., Gu, K., Zhang, X., et al., 2015. Soy isoflavone intake and bone mineral density in breast cancer survivors. Cancer Causes Control, 26(4):571–580. http://dx.doi.org/10.1007/s10552-015-0534-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee, S., Ali, S., Azmi, A., et al., 2012. Abstract 2698: improved therapeutic activity of isoflavone-G2535 and docetaxel combination in hormone refractory prostate cancer. Cancer Res., 72(8 Suppl.):2698. http://dx.doi.org/10.1158/1538-7445.AM2012-2698

    Article  Google Scholar 

  • Budhathoki, S., Joshi, A.M., Ohnaka, K., et al., 2011. Soy food and isoflavone intake and colorectal cancer risk: the fukuoka colorectal cancer study. Scand. J. Gastroenterol., 46(2):165–172. http://dx.doi.org/10.3109/00365521.2010.522720

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Hou, R., Zhang, X., et al., 2014. Calycosin suppresses breast cancer cell growth via ER?dependent regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways. PLoS ONE, 9(3):e91245. http://dx.doi.org/10.1371/journal.pone.0091245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi, E.J., Kim, G.H., 2013. Antiproliferative activity of daidzein and genistein may be related to ERα/c-erbB-2 expression in human breast cancer cells. Mol. Med. Rep., 7(3):781–784. http://dx.doi.org/10.3892/mmr.2013.1283

    Article  CAS  PubMed  Google Scholar 

  • Cotrim, C.Z., Fabris, V., Doria, M.L., et al., 2013. Estrogen receptor β growth-inhibitory effects are repressed through activation of MAPK and PI3K signalling in mammary epithelial and breast cancer cells. Oncogene, 32(19):2390–2402. http://dx.doi.org/10.1038/onc.2012.261

    Article  CAS  PubMed  Google Scholar 

  • Cui, M.L., Yang, H.Y., He, G.Q., 2015. Submerged fermentation production and characterization of intracellular triterpenoids from Ganoderma lucidum using HPLCESI-MS. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(12):998–1010. http://dx.doi.org/10.1631/jzus.B1500147

    Article  CAS  Google Scholar 

  • Ewe, J.A., Wan-Abdullah, W.N., Alias, A.K., et al., 2012. Enhanced growth of lactobacilli and bioconversion of isoflavones in biotin-supplemented soymilk by electroporation. Int. J. Food Sci. Nutr., 63(5):580–596. http://dx.doi.org/10.3109/09637486.2011.641940

    Article  CAS  PubMed  Google Scholar 

  • Ferlay, J., Soerjomataram, I., Dikshit, R., et al., 2015. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 136(5):E359–E386. http://dx.doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  • Gong, Y., Li, Y., Lu, Y., et al., 2011. Bioactive tanshinones in Salvia miltiorrhiza inhibit the growth of prostate cancer cells in vitro and in mice. Int. J. Cancer, 129(5):1042–1052. http://dx.doi.org/10.1002/ijc.25678

    Article  CAS  PubMed  Google Scholar 

  • Guo, X.Y., Liu, D., Ye, M., et al., 2013. Structural characterization of minor metabolites and pharmacokinetics of ganoderic acid C2 in rat plasma by HPLC coupled with electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal., 75:64–73. http://dx.doi.org/10.1016/j.jpba.2012.11.024

    Article  CAS  PubMed  Google Scholar 

  • Handa, C.L., Couto, U.R., Vicensoti, A.H., et al., 2014. Optimisation of soy flour fermentation parameters to produce beta-glucosidase for bioconversion into aglycones. Food Chem., 152:56–65. http://dx.doi.org/10.1016/j.foodchem.2013.11.101

    Article  CAS  PubMed  Google Scholar 

  • Hati, S., Vij, S., Singh, B.P., et al., 2015. β-Glucosidase activity and bioconversion of isoflavones during fermentation of soymilk. J. Sci. Food Agric., 95(1):216–220. http://dx.doi.org/10.1002/jsfa.6743

    Article  CAS  PubMed  Google Scholar 

  • Hsin, I.L., Ou, C.C., Wu, M.F., et al., 2015. GMI, an immunomodulatory protein from Ganoderma microsporum, potentiates cisplatin-induced apoptosis via autophagy in lung cancer cells. Mol. Pharm., 12(5):1534–1543. http://dx.doi.org/10.1021/mp500840z

    Article  CAS  PubMed  Google Scholar 

  • Indran, I.R., Tufo, G., Pervaiz, S., et al., 2011. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. BBA-Bioenergetics, 1807(6):735–745. http://dx.doi.org/10.1016/j.bbabio.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  • Kang, D., Mutakin, M., Levita, J., 2015. Computational study of triterpenoids of Ganoderma lucidum with aspartic protease enzymes for discovering HIV-1 and plasmepsin inhibitors. Int. J. Chem., 7(1):62–68. http://dx.doi.org/10.5539/ijc.v7n1p62

    Article  CAS  Google Scholar 

  • Keypour, S., Rafati, H., Riahi, H., et al., 2010. Qualitative analysis of ganoderic acids in Ganoderma lucidum from Iran and China by RP-HPLC and electrospray ionisationmass spectrometry (ESI-MS). Food Chem., 119(4):1704–1708. http://dx.doi.org/10.1016/j.foodchem.2009.09.058

    Article  CAS  Google Scholar 

  • Kim, H.M., Paik, S.Y., Ra, K.S., et al., 2006. Enhanced production of exopolysaccharides by fed-batch culture of Ganoderma resinaceum DG-6556. J. Microbiol., 44(2):233–242.

    CAS  PubMed  Google Scholar 

  • Kurahashi, N., Iwasaki, M., Sasazuki, S., et al., 2007. Soy product and isoflavone consumption in relation to prostate cancer in Japanese men. Cancer Epidemiol. Biomarkers Prev., 16(3):538–545. http://dx.doi.org/10.1158/1055-9965.EPI-06-0517

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.Y., Rhee, H.M., 1990. Cardiovascular effects of mycelium extract of Ganoderma lucidum: inhibition of sympathetic outflow as a mechanism of its hypotensive action. Chem. Pharm. Bull., 38(5):1359–1364. http://dx.doi.org/10.1248/cpb.38.1359

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Kong, D., Ahmad, A., et al., 2012a. Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics, 7(8):940–949. http://dx.doi.org/10.4161/epi.21236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Kong, D., Ahmad, A., et al., 2012b. Targeting bone remodeling by isoflavone and 3,3’-diindolylmethane in the context of prostate cancer bone metastasis. PLoS ONE, 7(3):e33011. http://dx.doi.org/10.1371/journal.pone.0033011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, J.C.W., Chan, T.K., Ng, D.S., et al., 2012. Andrographolide and its analogues: versatile bioactive molecules for combating inflammation and cancer. Clin. Exp. Pharmacol. Physiol., 39(3):300–310. http://dx.doi.org/10.1111/j.1440-1681.2011.05633.x

    Article  CAS  PubMed  Google Scholar 

  • Liu, F., Bardhan, K., Yang, D., et al., 2012. NF-κB directly regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression. J. Biol. Chem., 287(30):25530–25540. http://dx.doi.org/10.1074/jbc.M112.356279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Zhang, C., Hu, W., et al., 2015. Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett., 356(2):197–203. http://dx.doi.org/10.1016/j.canlet.2013.12.025

    Article  CAS  PubMed  Google Scholar 

  • Loganathan, J., Jiang, J., Smith, A., et al., 2014. The mushroom Ganoderma lucidum suppresses breast-to-lung cancer metastasis through the inhibition of pro-invasive genes. Int. J. Oncol., 44(6):2009–2015. http://dx.doi.org/10.3892/ijo.2014.2375

    Article  PubMed  PubMed Central  Google Scholar 

  • Maitan-Alfenas, G.P., Lorena, G.A., de Almeida, M.N., et al., 2014. Hydrolysis of soybean isoflavones by Debaryomyces hansenii UFV-1 immobilised cells and free β-glucosidase. Food Chem., 146:429–436. http://dx.doi.org/10.1016/j.foodchem.2013.09.099

    Article  CAS  PubMed  Google Scholar 

  • Mayola, E., Gallerne, C., Esposti, D.D., et al., 2011. Withaferin a induces apoptosis in human melanoma cells through generation of reactive oxygen species and downregulation of Bcl-2. Apoptosis, 16(10):1014–1027.

    Article  CAS  PubMed  Google Scholar 

  • Mense, S.M., Hei, T.K., Ganju, R.K., et al., 2008. Phytoestrogens and breast cancer prevention: possible mechanisms of action. Environ. Health Perspect., 116(4):426–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda, C.F., Morales-Cruz, M., Suarez, B., et al., 2014. Effect of cytochrome c modification with co-polymer on its apoptotic activity for cancer treatment (LB248). FASEB J., 28(1 Suppl.):248.

    Google Scholar 

  • Munck, L., Jorgensen, K.G., Ruud-Hansen, J., et al., 1989. The EBC methods for determination of high molecular weight β-glucan in barley, malt, wort and beer. J. Inst. Brewing, 95(2):79–82. http://dx.doi.org/10.1002/j.2050-0416.1989.tb04612.x

    Article  CAS  Google Scholar 

  • Ollberding, N.J., Lim, U., Wilkens, L.R., et al., 2012. Legume, soy, tofu, and isoflavone intake and endometrial cancer risk in postmenopausal women in the multiethnic cohort study. J. Natl. Cancer Inst., 104(1):67–76. http://dx.doi.org/10.1093/jnci/djr475

    Article  CAS  PubMed  Google Scholar 

  • Prietsch, R.F., Monte, L.G., da Silva, F.A., et al., 2014. Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of proapoptotic factors and oxidative stress enzymes. Mol. Cell Biochem., 390(1-2):235–242. http://dx.doi.org/10.1007/s11010-014-1974-x

    Article  CAS  PubMed  Google Scholar 

  • Priyadarsini, R.V., Murugan, R.S., Maitreyi, S., et al., 2010. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur. J. Pharmacol., 649(1-3):84–91. http://dx.doi.org/10.1016/j.ejphar.2010.09.020

    Article  CAS  Google Scholar 

  • Selent, J., Kaczor, A.A., Guixa-Gonzalez, R., et al., 2013. Rational design of the survivin/CDK4 complex by combining protein-protein docking and molecular dynamics simulations. J. Mol. Model., 19(4):1507–1514. http://dx.doi.org/10.1007/s00894-012-1705-8

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, K., Singh, A.K., Khan, K., et al., 2014. Assessment of enhancement of peak bone gain by isoflavone enriched standardized soy extract in female rats. J. Funct. Foods, 7:314–321. http://dx.doi.org/10.1016/j.jff.2014.01.029

    Article  CAS  Google Scholar 

  • Suarez-Jimenez, G.M., Burgos-Hernandez, A., Ezquerra-Brauer, J.M., 2012. Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Marine Drugs, 10(12):963–986. http://dx.doi.org/10.3390/md10050963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szliszka, E., Czuba, Z.P., Sędek, L., et al., 2011. Enhanced TRAIL-mediated apoptosis in prostate cancer cells by the bioactive compounds neobavaisoflavone and psoralidin isolated from Psoralea corylifolia. Pharm. Rep., 63(1):139–148. http://dx.doi.org/10.1016/S1734-1140(11)70408-X

    Article  CAS  Google Scholar 

  • Tang, W., Liu, J.W., Zhao, W.M., et al., 2006. Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sci., 80(3):205–211. http://dx.doi.org/10.1016/j.lfs.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  • Thomas, S., Quinn, B.A., Das, S.K., et al., 2013. Targeting the Bcl-2 family for cancer therapy. Exp. Opin. Therapeut. Tar., 17(1):61–75. http://dx.doi.org/10.1517/14728222.2013.733001

    Article  CAS  Google Scholar 

  • Titiek, F., Umar, S., Cahyanto, M., et al., 2013. Effect of indigenous lactic acid bacteria fermentation on enrichment of isoflavone and antioxidant properties of kerandang (Canavalia virosa) extract. Int. Food Res. J., 20(5):2945–2950.

    Google Scholar 

  • Tse, G., Eslick, G.D., 2016. Soy and isoflavone consumption and risk of gastrointestinal cancer: a systematic review and meta-analysis. Eur. J. Nutr., 55(1):63–73. http://dx.doi.org/10.1007/s00394-014-0824-7

    Article  CAS  PubMed  Google Scholar 

  • Tsuboy, M.S., Marcarini, J.C., de Souza, A.O., et al., 2014. Genistein at maximal physiologic serum levels induces G0/G1 arrest in MCF-7 and HB4a cells, but not apoptosis. J. Med. Food, 17(2):218–225. http://dx.doi.org/10.1089/jmf.2013.0067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Meerloo, J., Kaspers, G.J., Cloos, J., 2011. Cell sensitivity assays: the MTT assay. In: Cree, I. (Ed.), Cancer Cell Culture. Methods in Molecular Biology (Methods and Protocols), Vol. 731. Humana Press, p.237–245. http://dx.doi.org/10.1007/978-1-61779-080-5_20

    Google Scholar 

  • Varfolomeev, E., Goncharov, T., Vucic, D., 2015. Roles of c-IAP proteins in TNF receptor family activation of NF-κB signaling. In: May, M. (Ed.), NF-κB. Methods in Molecular Biology, Vol. 1280. Humana Press, New York, p.269–282. http://dx.doi.org/10.1007/978-1-4939-2422-6_15

    Google Scholar 

  • Wei, J., Bhatt, S., Chang, L.M., et al., 2012. Isoflavones, genistein and daidzein, regulate mucosal immune response by suppressing dendritic cell function. PLoS ONE, 7(10):e47979. http://dx.doi.org/10.1371/journal.pone.0047979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, C.F., Wu, A.R., Zhu, H., et al., 2013. Melatonin is involved in the apoptosis and necrosis of pancreatic cancer cell line SW-1990 via modulating of Bcl-2/Bax balance. Biomed. Pharmacother., 67(2):133–139. http://dx.doi.org/10.1016/j.biopha.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  • Yan, L., Spitznagel, E.L., Bosland, M.C., 2010. Soy consumption and colorectal cancer risk in humans: a metaanalysis. Cancer Epidem. Biomar. Prev., 19(1):148–158. http://dx.doi.org/10.1158/1055-9965.EPI-09-0856

    Article  CAS  Google Scholar 

  • Yeo, S.K., Liong, M.T., 2010. Angiotensin I-converting enzyme inhibitory activity and bioconversion of isoflavones by probiotics in soymilk supplemented with prebiotics. Int. J. Food Sci. Nutr., 61(2):161–181. http://dx.doi.org/10.3109/09637480903348122

    Article  CAS  PubMed  Google Scholar 

  • Yeom, S.J., Kim, B.N., Kim, Y.S., et al., 2012. Hydrolysis of isoflavone glycosides by a thermostable beta-glucosidase from Pyrococcus furiosus. J. Agric. Food Chem., 260(6):1535–1541. http://dx.doi.org/10.1021/jf204432g

    Article  CAS  Google Scholar 

  • Yin, L.J., Tai, H.M., Lee, H.H., et al., 2014. Proteolysis and lactobacillus fermentation effects on the isoflavones transformation and removal of anti-nutritional factors of soy bean. J. Mar. Sci. Technol., 22(4):525–530.

    Google Scholar 

  • Zhao, W., Xu, J.W., Zhong, J.J., 2011. Enhanced production of ganoderic acids in static liquid culture of Ganoderma lucidum under nitrogen-limiting conditions. Bioresour. Technol., 102(17):8185–8190. http://dx.doi.org/10.1016/j.biortech.2011.06.043

    Article  CAS  PubMed  Google Scholar 

  • Zhou, C., Lin, H., Ge, X., et al., 2015. The effects of dietary soybean isoflavones on growth, innate immune responses, hepatic antioxidant abilities and disease resistance of juvenile golden pompano Trachinotus ovatus. Fish Shellfish Immunol., 43(1):158–166. http://dx.doi.org/10.1016/j.fsi.2014.12.014

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-qing He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Ml., Yang, Hy. & He, Gq. Apoptosis induction of colorectal cancer cells HTL-9 in vitro by the transformed products of soybean isoflavones by Ganoderma lucidum . J. Zhejiang Univ. Sci. B 18, 1101–1112 (2017). https://doi.org/10.1631/jzus.B1700189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1700189

Keywords

CLC number

关键词

Navigation