Skip to main content
Log in

Elaeocarpus reticulatus fruit extracts reduce viability and induce apoptosis in pancreatic cancer cells in vitro

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Treatment options for pancreatic cancer (PC) are severely limited due to late diagnosis, early metastasis and the inadequacy of chemotherapy and radiotherapy to combat the aggressive biology of the disease. In recent years, plant-derived bioactive compounds have emerged as a source of novel, anti-cancer agents. Used in traditional medicine worldwide, Elaeocarpus species have reported anti-inflammatory, antioxidant and anti-cancer properties. This study aimed to isolate and identify potential anti-PC compounds in the fruit of Elaeocarpus reticulatus Sm. A 50% acetone crude extract significantly decreased the viability of four pancreatic cell lines ( 10 µg/mL for BxPC-3 cells) and induced apoptosis in BxPC-3 and HPDE cells. Analysis by HPLC identified the triterpenoid Cucurbitacin I as a likely component of the extract. Furthermore, treatment with Cucurbitacin I significantly reduced the viability of HPDE and BxPC-3 cells, with results comparable to the same concentration of gemcitabine. Interestingly, attempts to isolate bioactive compounds revealed that the crude extract was more effective at reducing PC-cell viability than the fractionated extracts. This study provides initial insight into the bioactive constituents of E. reticulatus fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CCK-8:

Cell counting kit 8

FBS:

Fetal bovine serum

HPLC:

High-performance liquid chromatography

PC:

Pancreatic cancer

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics. CA Cancer J Clin 68(1):7–30

    Article  PubMed  Google Scholar 

  2. Rawla P, Sunkara T, Gaduputi V (2019) Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol 10(1):10–27

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ilic M, Ilic I (2016) Epidemiology of pancreatic cancer. World J Gastroenterol 22(44):9694–9705

    Article  PubMed  PubMed Central  Google Scholar 

  4. Falasca M, Kim M, Casari I (2016) Pancreatic cancer: current research and future directions. BBA Rev Cancer 1865:123–132

    CAS  Google Scholar 

  5. Hashimoto D et al (2016) Heterogeneity of KRAS mutations in pancreatic ductal adenocarcinoma. Pancreas 45(8):1111–1114

    Article  CAS  PubMed  Google Scholar 

  6. Verbeke C (2016) Morphological heterogeneity in ductal adenocarcinoma of the pancreas—does it matter? Pancreatology 16(3):295–301

    Article  PubMed  Google Scholar 

  7. Kleppe M, Levine RL (2014) Tumor heterogeneity confounds and illuminates: assessing the implications. Nat Med 20(4):342–344

    Article  CAS  PubMed  Google Scholar 

  8. Apaya MK, Chang MT, Shyur LF (2016) Phytomedicine polypharmacology: cancer therapy through modulating the tumor microenvironment and oxylipin dynamics. Pharmacol Ther 162:1–206

    Article  CAS  Google Scholar 

  9. Apte MV et al (2013) A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 144(6):1210–1219

    Article  PubMed  Google Scholar 

  10. Jiang J-H et al (2015) Epithelial–mesenchymal transition in pancreatic cancer: is it a clinically significant factor? BBA Rev Cancer 1855:43–49

    CAS  Google Scholar 

  11. Abel EV, Simeone DM (2013) Biology and clinical applications of pancreatic cancer stem cells. Gastroenterology 144(6):1241–1248

    Article  PubMed  Google Scholar 

  12. Li Y et al (2013) Pancreatic cancer stem cells: emerging target for designing novel therapy. Cancer Lett 338(1):94–100

    Article  CAS  PubMed  Google Scholar 

  13. Tang B et al (2016) Calcium sensing receptor suppresses human pancreatic tumorigenesis through a novel NCX1/Ca/beta-catenin signaling pathway. Cancer Lett 377(1):44–54

    Article  CAS  PubMed  Google Scholar 

  14. Jones S et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Waddell N et al (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518(7540):495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dimou F et al (2015) Trends in receipt and timing of multimodality therapy in early-stage pancreatic cancer. J Gastrointest Surg 20(1):93–103

    Article  PubMed  PubMed Central  Google Scholar 

  17. Conroy T et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New Engl J Med 364(19):1817–1825

    Article  CAS  PubMed  Google Scholar 

  18. Chiorean EG, Coveler AL (2015) Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies. Drug Des Dev Ther 9:3529–3545

    Article  CAS  Google Scholar 

  19. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhanot A, Sharma R, Noolvi MN (2011) Natural sources as potential anti-cancer agents: a review. Int J Phytomed 3(1):18

    Google Scholar 

  21. Tewari D, Rawat P, Singh PK (2019) Adverse drug reactions of anticancer drugs derived from natural sources. Food Chem Toxicol 123:522–535

    Article  CAS  PubMed  Google Scholar 

  22. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu LF et al (2000) Mechanism of action of camptothecin. Ann N Y Acad Sci 922(1):1–10

    Article  CAS  PubMed  Google Scholar 

  24. Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9(10):790–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vaccaro V et al (2015) Metastatic pancreatic cancer: is there a light at the end of the tunnel? World J Gastroenterol 21(16):4788–4801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gardner ER et al (2008) Randomized crossover pharmacokinetic study of solvent-based paclitaxel and nab-paclitaxel. Clin Cancer Res 14(13):4200–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Passacantilli I et al (2018) Co-treatment with gemcitabine and nab-paclitaxel exerts additive effects on pancreatic cancer cell death. Oncol Rep 39(4):1984–1990

    CAS  PubMed  Google Scholar 

  28. Mohanty S, Cock IE (2012) The chemotherapeutic potential of Terminalia ferdinandiana: phytochemistry and bioactivity. Pharmacogn Rev 6(11):29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vuong QV et al (2014) Fruit-derived phenolic compounds and pancreatic cancer: perspectives from Australian native fruits. J Ethnopharmacol 152(2):227–242

    Article  CAS  PubMed  Google Scholar 

  30. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2(5):270–278

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rickard S (2011) The new ornamental garden. CSIRO Publishing Gardening Guides, Collingwood

    Book  Google Scholar 

  32. Vuong QV et al (2018) Fruit characteristics, phytochemical and antioxidant properties of blueberry ash (Elaeocarpus reticulatus). Heliyon 4(10):e00834

    Article  PubMed  PubMed Central  Google Scholar 

  33. Michael JP (2016) Chapter one—Simple indolizidine and quinolizidine alkaloids. In: Hans-Joachim K (ed) The alkaloids: chemistry and biology. Academic Press, Cambridge, pp 1–498

    Google Scholar 

  34. Singh RK, Bhattacharya SK, Acharya SB (2000) Studies on extracts of Elaeocarpus sphaericus fruits on in vitro rat mast cells. Phytomedicine 7(3):205–207

    Article  CAS  PubMed  Google Scholar 

  35. Garg K, Goswami K, Khurana G (2013) A pharmacognostical review on Elaeocarpus sphaericus. Int J Pharm Pharm Sci 5:3–8

    Google Scholar 

  36. Utami R et al (2013) Phenolic contents, antioxidant and cytotoxic activities of Elaeocarpus floribundus Blume. Pak J Pharm Sci 26(2):245–250

    CAS  PubMed  Google Scholar 

  37. Hule AK et al (2011) An evaluation of the antidiabetic effects of Elaeocarpus ganitrus in experimental animals. Indian J Pharmacol 43(1):56–59

    Article  PubMed  PubMed Central  Google Scholar 

  38. Singh B et al (2015) Phytochemical and biological aspects of Rudraksha, the stony endocarp of Elaeocarpus ganitrus (Roxb.): a review. Isr J Plant Sci 62(4):1–11

    Article  Google Scholar 

  39. Geetha DH, Rajeswari M, Jayashree I (2013) Chemical profiling of Elaeocarpus serratus L. by GC-MS. Asian Pac J Trop Biomed 3(12):985–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Joshi S et al (2012) A comprehensive report on therapeutic potential of Elaeocarpus ganitrus Roxb.(Rudraksha). Environ Conserv J 13(3):147–150

    Google Scholar 

  41. Meng D et al (2008) Cytotoxic cucurbitane-type triterpenoids from Elaeocarpus hainanensis. Planta Med 74(14):1741–1744

    Article  CAS  PubMed  Google Scholar 

  42. Fang X et al (1984) Plant anticancer agents, XXXIV. Cucurbitacins from Elaeocarpus dolichostylus. J Nat Prod 47(6):988–993

    Article  CAS  PubMed  Google Scholar 

  43. Harden GJ (2005) Flora of New South Wales, Vol. 1. University of NSW Press, Royal Botanic Gardens Sydney, Sydney

    Google Scholar 

  44. Ouyang H et al (2000) Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am J Pathol 157(5):1623–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schoumacher RA et al (1990) A cystic fibrosis pancreatic adenocarcinoma cell line. Proc Natl Acad Sci USA 87(10):4012–4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tan MH et al (1986) Characterization of a new primary human pancreatic tumor line. Cancer Invest 4(1):15–23

    Article  CAS  PubMed  Google Scholar 

  47. Yunis AA, Arimura GK, Russin DJ (1977) Human pancreatic carcinoma (MIA PaCa-2) in continuous culture: sensitivity to asparaginase. Int J Cancer 19(1):128–135

    Article  CAS  PubMed  Google Scholar 

  48. Do QD et al (2014) Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal 22(3):296–302

    Article  CAS  PubMed  Google Scholar 

  49. Alothman M, Bhat R, Karim AA (2009) Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem 115(3):785–788

    Article  CAS  Google Scholar 

  50. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10):7313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xuan TD et al (2007) Efficacy of extracting solvents to chemical components of kava (Piper methysticum) roots. J Nat Med 62(2):188

    Article  PubMed  CAS  Google Scholar 

  52. Symonds EL, Konczak I, Fenech M (2013) The Australian fruit Illawarra plum (Podocarpus elatus Endl., Podocarpaceae) inhibits telomerase, increases histone deacetylase activity and decreases proliferation of colon cancer cells. Br J Nutr 109(12):2117–2125

    Article  CAS  PubMed  Google Scholar 

  53. Tan AC et al (2011) Native Australian fruit polyphenols inhibit cell viability and induce apoptosis in human cancer cell lines. Nutr Cancer 63(3):444–455

    Article  CAS  PubMed  Google Scholar 

  54. Varughese B, Tripathi J (2013) Phytochemical evaluation of different solvent extracts of Aegle marmelos fruit at different stages of its ripening. Adv Life Sci Technol 8:8–12

    Google Scholar 

  55. Gami B (2016) Screening of methanol & acetone extract for antimicrobial activity of some medicinal plants species of Indian folklore. Int J Res Pharm Sci 2(1):69–75

    Google Scholar 

  56. Zhu ZX et al (2010) [Effects of gemcitabine and pemetrexed on the proliferation of pancreatic cancer cell lines BXPC-3 and PANC-1 in vitro]. Nan Fang Yi Ke Da Xue Xue Bao 30(1):149–152

    CAS  PubMed  Google Scholar 

  57. Cappella P et al (2001) Cell cycle effects of gemcitabine. Int J Cancer 93(3):401–408

    Article  CAS  PubMed  Google Scholar 

  58. Habiro A et al (2004) Involvement of p38 mitogen-activated protein kinase in gemcitabine-induced apoptosis in human pancreatic cancer cells. Biochem Biophys Res Commun 316(1):71–77

    Article  CAS  PubMed  Google Scholar 

  59. de S Cavalcante, L. and Monteiro G (2014) Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol 741:8–16

    Article  CAS  Google Scholar 

  60. Yong-Xian G et al (2016) Gemcitabine inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells. J Cancer Res Ther 12(5):1–4

    Article  PubMed  CAS  Google Scholar 

  61. Hamed SS, Straubinger RM, Jusko WJ (2013) Pharmacodynamic modeling of cell cycle and apoptotic effects of gemcitabine on pancreatic adenocarcinoma cells. Cancer Chemother Pharmacol 72(3):553–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jaganathan R et al (2013) Potential therapeutic role of Tridham in human hepatocellular carcinoma cell line through induction of p53 independent apoptosis. BMC Complement Altern Med 13(1):323

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134(12):3479S-3485S

    Article  CAS  PubMed  Google Scholar 

  64. Rasoanaivo P et al (2011) Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malaria J 10(Suppl 1):S4–S4

    Article  Google Scholar 

  65. Pan L et al (2012) Isolation, structure elucidation, and biological evaluation of 16,23-epoxycucurbitacin constituents from Eleaocarpus chinensis. J Nat Prod 75(3):444–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ito A et al (2002) Ellagic acid derivatives and cytotoxic cucurbitacins from Elaeocarpus mastersii. Phytochemistry 61(2):171–174

    Article  CAS  PubMed  Google Scholar 

  67. Alghasham AA (2013) Cucurbitacins—a promising target for cancer therapy. Int J Health Sci 7(1):77–89

    Google Scholar 

  68. Zhang Z-R, Gao M-X, Yang K (2017) Cucurbitacin B inhibits cell proliferation and induces apoptosis in human osteosarcoma cells via modulation of the JAK2/STAT3 and MAPK pathways. Exp Ther Med 14(1):805–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sikander M et al (2016) Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci Rep 6:36594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Blaskovich MA et al (2003) Discovery of JSI-124 (Cucurbitacin I), a selective janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res 63(6):1270–1279

    CAS  PubMed  Google Scholar 

  71. Qi J et al (2015) JSI-124 (Cucurbitacin I) inhibits tumor angiogenesis of human breast cancer through reduction of STAT3 phosphorylation. Am J Chin Med 43(2):337–347

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.T is supported by an Australian Government Research Training Program Scholarship. E.B is supported by in NHMRC Early Career Fellowship. This work was funded by internal departmental funds from the University of Newcastle only.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandria Turner.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, A., Bond, D.R., Vuong, Q.V. et al. Elaeocarpus reticulatus fruit extracts reduce viability and induce apoptosis in pancreatic cancer cells in vitro. Mol Biol Rep 47, 2073–2084 (2020). https://doi.org/10.1007/s11033-020-05307-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05307-8

Keywords

Navigation