Skip to main content
Log in

Adhesion of bone marrow mesenchymal stem cells on porous titanium surfaces with strontium-doped hydroxyapatite coating

多孔纯钛表面掺锶羟基磷灰石涂层对骨髓间充质 干细胞粘附的影响

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

To determine the adhesion behavior of bone marrow mesenchymal stem cells (MSCs) on a titanium surface with a nanostructured strontium-doped hydroxyapatite (Sr-HA) coating.

Methods

Sr-HA coatings were applied on roughened titanium surfaces using an electrochemical deposition method. Primary cultured rat MSCs were seeded onto Sr-HA-, HA-coated titanium, and roughened titanium surfaces, and they were then cultured for 1, 6, and 24 h. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the metabolic condition of the cells. Scanning electron microscopy (SEM) was used to observe the cell morphology. The cytoskeletal structure was analyzed using fluorescence actin staining to characterize cell adherence. Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) was used to analyze the gene expression levels of FAK (focal adhesion kinase), vinculin, integrin β1, and integrin β3 after culturing for 24, 48, and 72 h.

Results

MSCs cultured on the Sr-HA surface showed better cell proliferation and viability. Improvement of cell adhesion and structural rearrangement of the cytoskeleton were observed on the Sr-HA surface. The gene expression of FAK, vinculin, integrin β1, and integrin β3 was also elevated on the Sr-HA surface.

Conclusions

Cell viability, adhesion, cell morphology, and the cytoskeletal structure were all upregulated considerably by the titanium surface modified with a Sr-HA coating.

中文概要

目的

观察电化学沉积的纳米结构掺锶羟基磷灰石涂层 表面对大鼠骨髓间充质干细胞早期粘附行为的 影响。

创新点

首次观察电化学沉积的掺锶羟基磷灰石涂层表面 骨髓间充质干细胞的早期粘附行为,并对相关基 因进行了检测。

方法

纯钛表面经过喷砂和双重酸处理,形成多孔粗糙 结构。用电化学方法在其粗糙表面沉积羟基磷灰 石涂层(HA)和掺锶羟基磷灰石涂层(Sr-HA)。 用贴壁法将4 周大鼠股骨骨髓间充质干细胞分离 进行原代培养后将细胞接种到多孔纯钛,HA 和 Sr-HA 表面培养1、6 和24 小时。用场发射扫描 电镜(SEM)观察细胞的形貌特点。用异硫氰酸 荧光素(FITC)标记的鬼笔环肽进行免疫荧光染 色标记细胞骨架,Hoechst 33258 进行细胞核染 色,激光共聚焦荧光显微镜进行拍照后使用 ImageJ 进行细胞的计数和图形分析。用实时荧光 定量逆转录聚合酶链式反应(RT-qPCR)测定24、 48 和72 小时不同实验组中骨髓间充质干细胞中 FAK、vinculin、integrin β1 和integrin β3 的基因 表达,并进行统计学分析。

结论

SEM观察结果显示,骨髓间充质干细胞在三种表 面都能正常黏附、生长和增殖。在Sr-HA 组表面, 细胞粘附、细胞活力和细胞骨架的铺展都较粗糙 表面组和HA 组有较显著的提高。RT-qPCR 结果 显示,在各个时间点Sr-HA 组表面骨髓间充质干 细胞的FAK、vinculin、integrin β1 和integrin β3 的基因表达与粗糙组有显著性差异,且在24 小 时后与HA 组亦有显著性差异。综上所述,掺锶 羟基磷灰石纳米涂层具有较好的生物相容性,可 以促进大鼠骨髓间充质干细胞在纯钛表面的早 期粘附。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abert, J., Bergmann, C., Fischer, H., 2014. Wet chemical synthesis of strontium-substituted hydroxyapatite and its influence on the mechanical and biological properties. Ceram. Int., 40(7):9195–9203. http://dx.doi.org/10.1016/j.ceramint.2014.01.138

    Article  CAS  Google Scholar 

  • Aina, V., Bergandi, L., Lusvardi, G., et al., 2013. Srcontaining hydroxyapatite: morphologies of HAcrystals and bioactivity on osteoblast cells. Mater. Sci. Eng. C Mater. Biol. Appl., 33(3):1132–1142. http://dx.doi.org/10.1016/j.msec.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  • Anselme, K., 2000. Osteoblast adhesion on biomaterials. Biomaterials, 21(7):667–681. http://dx.doi.org/10.1016/S0142-9612(99)00242-2

    Article  CAS  PubMed  Google Scholar 

  • Brammer, K.S., Choi, C., Frandsen, C.J., et al., 2011. Hydrophobic nanopillars initiate mesenchymal stem cell aggregation and osteo-differentiation. Acta Biomater., 7(2):683–690. http://dx.doi.org/10.1016/j.actbio.2010.09.022

    Article  CAS  PubMed  Google Scholar 

  • Branemark, P.I., 1983. Osseointegration and its experimental background. J. Prosth. Dent., 50(3):399–410. http://dx.doi.org/10.1016/S0022-3913(83)80101-2

    Article  CAS  Google Scholar 

  • Braux, J., Velard, F., Guillaume, C., et al., 2011. A new insight into the dissociating effect of strontium on bone resorption and formation. Acta Biomater., 7(6):2593–2603. http://dx.doi.org/10.1016/j.actbio.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  • Cox, S.C., Jamshidi, P., Grover, L.M., et al., 2014. Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater. Sci. Eng. C Mater. Biol. Appl., 35:106–114. http://dx.doi.org/10.1016/j.msec.2013.10.015

    Article  CAS  PubMed  Google Scholar 

  • Dalby, M.J., Gadegaard, N., Oreffo, R.O., 2014. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat. Mater., 13(6):558–569. http://dx.doi.org/10.1038/nmat3980

    Article  CAS  PubMed  Google Scholar 

  • Fage, S.W., Muris, J., Jakobsen, S.S., et al., 2016. Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermat., 74(6):323–345. http://dx.doi.org/10.1111/cod.12565

    Article  CAS  Google Scholar 

  • Fu, D.L., Jiang, Q.H., He, F.M., et al., 2012. Fluorescence microscopic analysis of bone osseointegration of strontiumsubstituted hydroxyapatite implants. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 13(5):364–371. http://dx.doi.org/10.1631/jzus.B1100381

    Article  CAS  Google Scholar 

  • Gao, J., Wang, M., Shi, C., et al., 2016. Synthesis of trace element Si and Sr codoping hydroxyapatite with non-cytotoxicity and enhanced cell proliferation and differentiation. Biol. Trace Element Res., 174(1):208–217. http://dx.doi.org/10.1007/s12011-016-0697-0

    Article  CAS  Google Scholar 

  • Guo, D.G., Hao, Y.Z., Li, H.Y., et al., 2013. Influences of Sr dose on the crystal structure parameters and Sr distributions of Sr-incorporated hydroxyapatite. J. Biomed. Mater. Res. Part B Appl. Biomater., 101(7):1275–1283. http://dx.doi.org/10.1002/jbmb.32940

    Article  CAS  PubMed  Google Scholar 

  • Hurtel-Lemaire, A.S., Mentaverri, R., Caudrillier, A., et al., 2009. The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. J. Biol. Chem., 284(1):575–584. http://dx.doi.org/10.1074/jbc.M801668200

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Q.H., Gong, X., Wang, X.X., et al., 2015. Osteogenesis of rat mesenchymal stem cells and osteoblastic cells on strontium-doped nanohydroxyapatite-coated titanium surfaces. Int. J. Oral Maxillofac. Implants, 30(2):461–471. http://dx.doi.org/10.11607/jomi.3798

    Article  PubMed  Google Scholar 

  • Jiao, M.J., Wang, X.X., 2009. Electrolytic deposition of magnesium-substituted hydroxyapatite crystals on titanium substrate. Mater. Lett., 63(27):2286–2289. http://dx.doi.org/10.1016/j.matlet.2009.07.048

    Article  CAS  Google Scholar 

  • Kaneko, K., Ito, M., Naoe, Y., et al., 2014. Integrin αv in the mechanical response of osteoblast lineage cells. Biochem. Biophys. Res. Commun., 447(2):352–357. http://dx.doi.org/10.1016/j.bbrc.2014.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaygili, O., Keser, S., Kom, M., et al., 2015. Strontium substituted hydroxyapatites: synthesis and determination of their structural properties, in vitro and in vivo performance. Mater. Sci. Eng. C Mater. Biol. Appl., 55:538–546. http://dx.doi.org/10.1016/j.msec.2015.05.081

    Article  CAS  PubMed  Google Scholar 

  • Khang, D., Choi, J., Im, Y.M., et al., 2012. Role of subnano-, nano-and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Biomaterials, 33(26):5997–6007. http://dx.doi.org/10.1016/j.biomaterials.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  • Krause, A., Cowles, E.A., Gronowicz, G., 2000. Integrinmediated signaling in osteoblasts on titanium implant materials. J. Biomed. Mater. Res., 52(4):738–747. http://dx.doi.org/10.1002/1097-4636(20001215)52:4<73 8::AID-JBM19>3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  • Krishna, O.D., Jha, A.K., Jia, X., et al., 2011. Integrinmediated adhesion and proliferation of human MSCs elicited by a hydroxyproline-lacking, collagen-like peptide. Biomaterials, 32(27):6412–6424. http://dx.doi.org/10.1016/j.biomaterials.2011.05.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, A., Nune, K.C., Basu, B., et al., 2016. Mechanistic contribution of electroconductive hydroxyapatite-titanium disilicide composite on the alignment and proliferation of cells. J. Biomater. Appl., 30(10):1505–1516. http://dx.doi.org/10.1177/0885328216631670

    Article  CAS  PubMed  Google Scholar 

  • Kuo, S.W., Lin, H.I., Ho, J.H., et al., 2012. Regulation of the fate of human mesenchymal stem cells by mechanical and stereo-topographical cues provided by silicon nanowires. Biomaterials, 33(20):5013–5022. http://dx.doi.org/10.1016/j.biomaterials.2012.03.080

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Chu, B.H., Chen, K.H., et al., 2009. Randomly oriented, upright SiO2 coated nanorods for reduced adhesion of mammalian cells. Biomaterials, 30(27):4488–4493. http://dx.doi.org/10.1016/j.biomaterials.2009.05.028

    Article  CAS  PubMed  Google Scholar 

  • Lim, J.Y., Dreiss, A.D., Zhou, Z., et al., 2007. The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials, 28(10):1787–1797. http://dx.doi.org/10.1016/j.biomaterials.2006.12.020

    Article  CAS  PubMed  Google Scholar 

  • Lindahl, C., Pujari-Palmer, S., Hoess, A., et al., 2015. The influence of Sr content in calcium phosphate coatings. Mater. Sci. Eng. C Mater. Biol. Appl., 53:322–330. http://dx.doi.org/10.1016/j.msec.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Wang, X.D., Jin, Q.M., et al., 2012. The stimulation of adipose-derived stem cell differentiation and mineralization by ordered rod-like fluorapatite coatings. Biomaterials, 33(20):5036–5046. http://dx.doi.org/10.1016/j.biomaterials.2012.03.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, L., Song, L.N., Yang, G.L., et al., 2011. Fabrication, characterization, and biological assessment of multilayer DNA coatings on sandblasted-dual acid etched titanium surface. J. Biomed. Mater. Res. Part A, 97A(3):300–310. http://dx.doi.org/10.1002/jbm.a.33059

    Article  CAS  Google Scholar 

  • Loya, M.C., Brammer, K.S., Choi, C., et al., 2010. Plasmainduced nanopillars on bare metal coronary stent surface for enhanced endothelialization. Acta Biomater., 6(12): 4589–4595. http://dx.doi.org/10.1016/j.actbio.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  • Madamanchi, A., Santoro, S.A., Zutter, M.M., 2014. α2β1 Integrin. Adv. Exp. Med. Biol., 819:41–60. http://dx.doi.org/10.1007/978-94-017-9153-3_3

    Article  CAS  PubMed  Google Scholar 

  • Matschegewski, C., Staehlke, S., Loeffler, R., et al., 2010. Cell architecture-cell function dependencies on titanium arrays with regular geometry. Biomaterials, 31(22):5729–5740. http://dx.doi.org/10.1016/j.biomaterials.2010.03.073

    Article  CAS  PubMed  Google Scholar 

  • Ni, G.X., Yao, Z.P., Huang, G.T., et al., 2011. The effect of strontium incorporation in hydroxyapatite on osteoblasts in vitro. J. Mater. Sci. Mater. Med., 22(4):961–967. http://dx.doi.org/10.1007/s10856-011-4264-0

    Article  CAS  PubMed  Google Scholar 

  • Omar, S., Repp, F., Desimone, P.M., et al., 2015. Sol–gel hybrid coatings with strontium-doped 45S5 glass particles for enhancing the performance of stainless steel implants: electrochemical, bioactive and in vivo response. J. Non-Crystal. Solids, 425:1–10. http://dx.doi.org/10.1016/j.jnoncrysol.2015.05.024

    Article  CAS  Google Scholar 

  • Park, J.H., Wasilewski, C.E., Almodovar, N., et al., 2012. The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors. Biomaterials, 33(30):7386–7393. http://dx.doi.org/10.1016/j.biomaterials.2012.06.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, J.K., Kim, Y.J., Yeom, J., et al., 2010. The topographic effect of zinc oxide nanoflowers on osteoblast growth and osseointegration. Adv. Mater., 22(43):4857–4861. http://dx.doi.org/10.1002/adma.201002255

    Article  CAS  PubMed  Google Scholar 

  • Peng, S., Zhou, G., Luk, K.D., et al., 2009. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell. Physiol. Biochem., 23(1-3):165–174. http://dx.doi.org/10.1159/000204105

    Article  CAS  PubMed  Google Scholar 

  • Seo, C.H., Jeong, H., Furukawa, K.S., et al., 2013. The switching of focal adhesion maturation sites and actin filament activation for MSCs by topography of welldefined micropatterned surfaces. Biomaterials, 34(7): 1764–1771. http://dx.doi.org/10.1016/j.biomaterials.2012.11.031

    Article  CAS  PubMed  Google Scholar 

  • Shi, J., Dong, L.L., He, F., et al., 2013. Osteoblast responses to thin nanohydroxyapatite coated on roughened titanium surfaces deposited by an electrochemical process. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 116(5):e311–e316. http://dx.doi.org/10.1016/j.oooo.2012.02.021

    Article  PubMed  Google Scholar 

  • Sirin, H.T., Vargel, I., Kutsal, T., et al., 2015. Ti implants with nanostructured and HA-coated surfaces for improved osseointegration. Artif. Cells Nanomed. Biotechnol., 44(3):1023–1030. http://dx.doi.org/10.3109/21691401.2015.1008512

    Article  PubMed  Google Scholar 

  • Sisti, K.E., de Andres, M.C., Johnston, D., et al., 2015. Skeletal stem cell and bone implant interactions are enhanced by LASER titanium modification. Biochem. Biophys. Res. Commun., 473(3):719–725. http://dx.doi.org/10.1016/j.bbrc.2015.10.013

    Article  PubMed  Google Scholar 

  • Takaoka, S., Yamaguchi, T., Yano, S., et al., 2010. The calcium-sensing receptor (CAR) is involved in strontium ranelate-induced osteoblast differentiation and mineralization. Horm. Metab. Res., 42(9):627–631. http://dx.doi.org/10.1055/s-0030-1255091

    Article  CAS  PubMed  Google Scholar 

  • Tao, Z.S., Bai, B.L., He, X.W., et al., 2016a. A comparative study of strontium-substituted hydroxyapatite coating on implant’s osseointegration for osteopenic rats. Med. Biol. Eng. Comput., 54(12):1959–1968. http://dx.doi.org/10.1007/s11517-016-1494-9

    Article  PubMed  Google Scholar 

  • Tao, Z.S., Zhou, W.S., He, X.W., et al., 2016b. A comparative study of zinc, magnesium, strontiumincorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. Mater. Sci. Eng. C Mater. Biol. Appl., 62:226–232. http://dx.doi.org/10.1016/j.msec.2016.01.034

    Article  CAS  PubMed  Google Scholar 

  • Uccelli, A., Moretta, L., Pistoia, V., 2008. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol., 8(9): 726–736. http://dx.doi.org/10.1038/nri2395

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Zhao, L., Wu, K., et al., 2013. The role of integrin-linked kinase/β-catenin pathway in the enhanced MG63 differentiation by micro/nano-textured topography. Biomaterials, 34(3):631–640. http://dx.doi.org/10.1016/j.biomaterials.2012.10.021

    Article  CAS  PubMed  Google Scholar 

  • Wong, K.L., Wong, C.T., Liu, W.C., et al., 2009. Mechanical properties and in vitro response of strontiumcontaining hydroxyapatite/polyetheretherketone composites. Biomaterials, 30(23-24):3810–3817. http://dx.doi.org/10.1016/j.biomaterials.2009.04.016

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Yang, Y., Wan, R., et al., 2014. Hydrothermal preparation and characterization of ultralong strontiumsubstituted hydroxyapatite whiskers using acetamide as homogeneous precipitation reagent. Sci. World J., 2014: 863137. http://dx.doi.org/10.1155/2014/863137

    Google Scholar 

  • Yang, F., Yang, D., Tu, J., et al., 2011. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/Catenin signaling. Stem Cells, 29(6):981–991. http://dx.doi.org/10.1002/stem.646

    Article  CAS  PubMed  Google Scholar 

  • Yang, H.W., Lin, M.H., Shang, G.W., et al., 2015. Osteogenesis of bone marrow mesenchymal stem cells on strontiumsubstituted nano-hydroxyapatite coated roughened titanium surfaces. Int. J. Clin. Exp. Med., 8(1):257–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yim, E.K., Darling, E.M., Kulangara, K., et al., 2010. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials, 31(6): 1299–1306. http://dx.doi.org/10.1016/j.biomaterials.2009.10.037

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., Liu, L., Wu, Z., et al., 2012. Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation. Biomaterials, 33(9): 2629–2641. http://dx.doi.org/10.1016/j.biomaterials.2011.12.024

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., Wang, H., Huo, K., et al., 2013. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials, 34(1):19–29. http://dx.doi.org/10.1016/j.biomaterials.2012.09.041

    Article  PubMed  Google Scholar 

  • Zhao, S.F., Dong, W.J., Jiang, Q.H., et al., 2013. Effects of zinc-substituted nano-hydroxyapatite coatings on bone integration with implant surfaces. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 14(6):518–525. http://dx.doi.org/10.1631/jzus.B1200327

    Article  CAS  Google Scholar 

  • Zhao, S.F., Shi, J., He, F.M., et al., 2014. Design and in vitro evaluation of simvastatin-hydroxyapatite coatings by an electrochemical process on titanium surfaces. J. Biomed. Nanotechnol., 10(7):1313–1319. http://dx.doi.org/10.1166/jbn.2014.1859

    Article  CAS  Google Scholar 

  • Zhou, J., Li, B., Lu, S., et al., 2013. Regulation of osteoblast proliferation and differentiation by interrod spacing of Sr-HA nanorods on microporous titania coatings. ACS Appl. Mater. Interf., 5(11):5358–5365. http://dx.doi.org/10.1021/am401339n

    Article  CAS  Google Scholar 

  • Zhou, J., Han, Y., Lu, S., 2014. Direct role of interrod spacing in mediating cell adhesion on Sr-HA nanorod-patterned coatings. Int. J. Nanomed., 9:1243–1260. http://dx.doi.org/10.2147/IJN.S58236

    Google Scholar 

  • Zhuang, X.M., Zhou, B., Ouyang, J.L., et al., 2014. Enhanced MC3T3-E1 preosteoblast response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces. Biomed. Mater., 9(4):045001. http://dx.doi.org/10.1088/1748-6041/9/4/045001

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai-ping Fu.

Additional information

Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LQ13H140001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, DL., Jiang, Qh., He, Fm. et al. Adhesion of bone marrow mesenchymal stem cells on porous titanium surfaces with strontium-doped hydroxyapatite coating. J. Zhejiang Univ. Sci. B 18, 778–788 (2017). https://doi.org/10.1631/jzus.B1600517

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600517

Key words

CLC number

关键词

Navigation