Skip to main content
Log in

Antioxidant activity of alcohol aqueous extracts of Crypthecodinium cohnii and Schizochytrium sp.

隐甲藻和裂殖壶藻醇水提物不同极性萃取物的抗氧化活性研究

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Crypthecodinium cohnii (dinoflagellate) and Schizochytrium sp. (thraustochytrid) are the main sources for docosahexaenoic acid (DHA). The present study aimed to evaluate the antioxidant activity of petroleum ether, ethyl acetate, n-butanol, and water fractions of alcohol aqueous extracts of these two microalgae and to provide a theoretical basis for comprehensive utilization. The antioxidant activity was determined by total antioxidant capacity (TAC) determination, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, ferrous ion-chelating ability (FICA) assay, and reducing power (RP) assay. The total phenolic content (TPC) and total flavonoid content (TFC) were also measured by the Folin-Ciocalteu and spectrophotometry methods, respectively. The results indicated that the extracts from these two microalgae possessed good antioxidant capacity. Analysis showed that most antioxidant performance indicators (TAC, DPPH, and RP) were positively correlated with the TPC of the extracts, suggesting that the phenolics might be the major components in C. cohnii and Schizochytrium sp., contributing to their antioxidative function. Therefore, the polar fractions of C. cohnii and Schizochytrium sp. could be further examined and considered for application in health products or cosmetics.

中文概要

目的

评价隐甲藻和裂殖壶藻醇水提物的石油醚萃取 相、乙酸乙酯萃取相、正丁醇萃取相和水相的抗 氧化活性水平,为综合利用两种微藻提供理论依 据。

创新点

隐甲藻和裂殖壶藻是二十二碳六烯酸(DHA)的 重要原料,然而提取DHA 后剩余的藻渣未得到 充分利用。本文首次对两种微藻的极性提取物的 不同极性部位进行抗氧化活性评价,并初步确定 多酚类化合物是其发挥抗氧化作用的主要物质成 分,为综合利用两种微藻提供了理论依据和参考。

方法

用70%乙醇浸提隐甲藻和裂殖壶藻藻粉,所得粗 提物分别使用石油醚、乙酸乙酯、正丁醇和水依 次萃取,得到不同极性组分萃取物。采用总抗氧 化能力、2,2-二苯基-1-三硝基苯肼(DPPH)自由 基清除能力、亚铁离子螯合能力及总还原力等方 法对不同极性组分的萃取物进行抗氧化活性评 价。采用Folin-Ciocalteu 方法测定样品中总多酚 含量,采用分光光度法测定样品中总黄酮含量。

结论

本实验结果显示,隐甲藻和裂殖壶藻醇水提物的 不同极性组分具有较好的抗氧化作用(图2~5)。 相关性分析结果表明萃取物中的多酚类化合物 与其抗氧化水平显著相关(表2 和表3),因此, 我们推测多酚类化合物是两种微藻的主要抗氧 化成分。综上所述,隐甲藻和裂殖壶藻具有综合 开发利用潜力,可深入研究。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam, M.N., Bristi, N.J., Rafiquzzaman, M., 2013. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J., 21(2):143–152. http://dx.doi.org/10.1016/j.jsps.2012.05.002

    Article  PubMed  Google Scholar 

  • Beam, C.A., Himes, M., 1982. Distribution of members of the Crypthecodinium cohnii (Dinophyceae) species complex. J. Eukaryot. Microbiol., 29(1):8–15. http://dx.doi.org/10.1111/j.1550-7408.1982.tb02874.x

    Google Scholar 

  • Carocho, M., Ferreira, I.C., 2013. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 51:15–25. http://dx.doi.org/10.1016/j.fct.2012.09.021

    Article  CAS  PubMed  Google Scholar 

  • Cheok, C.Y., Salman, H.A.K., Sulaiman, R., 2014. Extraction and quantification of saponins: a review. Food Res. Int., 59:16–40. http://dx.doi.org/10.1016/j.foodres.2014.01.057

    Article  CAS  Google Scholar 

  • Choochote, W., Suklampoo, L., Ochaikul, D., 2014. Evaluation of antioxidant capacities of green microalgae. J. Appl. Phycol., 26(1):43–48. http://dx.doi.org/10.1007/s10811-013-0084-6

    Article  CAS  Google Scholar 

  • Encarnação, T., Pais, A.A., Campos, M.G., et al., 2015. Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals. Sci. Prog., 98(2): 145–168. http://dx.doi.org/10.3184/003685015X14298590596266

    Article  PubMed  Google Scholar 

  • Fedorova-Dahms, I., Marone, P.A., Bauter, M., et al., 2011. Safety evaluation of DHA-rich Algal Oil from Schizochytrium sp. Food Chem. Toxicol., 49(12):3310–3318. http://dx.doi.org/10.1016/j.fct.2011.08.024

    Article  CAS  PubMed  Google Scholar 

  • Fedorova-Dahms, I., Thorsrud, B.A., Bailey, E., et al., 2014. A 3-week dietary bioequivalence study in preweaning farm piglets of two sources of docosahexaenoic acid produced from two different organisms. Food Chem. Toxicol., 65:43–51. http://dx.doi.org/10.1016/j.fct.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  • Gaffney, M., O'Rourke, R., Murphy, R., 2014. Manipulation of fatty acid and antioxidant profiles of the microalgae Schizochytrium sp. through flaxseed oil supplementation. Algal Res., 6B:195–200. http://dx.doi.org/10.1016/j.algal.2014.03.005

    Google Scholar 

  • Ganuza, E., Benítez-Santana, T., Atalah, E., et al., 2008. Crypthecodinium cohnii and Schizochytrium sp. as potential substitutes to fisheries-derived oils from seabream (Sparus aurata) microdiets. Aquaculture, 277(1-2):109–116. http://dx.doi.org/10.1016/j.aquaculture.2008.02.005

    Article  CAS  Google Scholar 

  • Gong, Y., Liu, J., Jiang, M., et al., 2015. Improvement of omega-3 docosahexaenoic acid production by marine dinoflagellate Crypthecodinium cohnii using rapeseed meal hydrolysate and waste molasses as feedstock. PLoS ONE, 10(5):e0125368. http://dx.doi.org/10.1371/journal.pone.0125368

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, D.S., Ji, X.J., Ren, L.J., et al., 2016. Development of a real-time bioprocess monitoring method for docosahexaenoic acid production by Schizochytrium sp. Bioresour. Technol., 216:422–427. http://dx.doi.org/10.1016/j.biortech.2016.05.044

    Article  CAS  PubMed  Google Scholar 

  • Hajimahmoodi, M., Faramarzi, M.A., Mohammadi, N., et al., 2010. Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J. Appl. Phycol., 22(1):43–50. http://dx.doi.org/10.1007/s10811-009-9424-y

    Article  CAS  Google Scholar 

  • Hillig, F., Pilarek, M., Junne, S., et al., 2013. Cultivation of marine microorganisms in single-use systems. In: Eibl, D., Eibl, R. (Eds.), Disposable Bioreactors II. Advances in Biochemical Engineering/Biotechnology, Vol. 138. Springer, Berlin, Heidelberg, p.179–206. http://dx.doi.org/10.1007/10_2013_219

    Article  Google Scholar 

  • Kasala, E.R., Bodduluru, L.N., Barua, C.C., et al., 2016. Antioxidant and antitumor efficacy of Luteolin, a dietary flavone on benzo(a)pyrene-induced experimental lung carcinogenesis. Biomed. Pharmacother., 82:568–577. http://dx.doi.org/10.1016/j.biopha.2016.05.042

    Article  CAS  PubMed  Google Scholar 

  • Khozin-Goldberg, I., Leu, S., Boussiba, S., 2016. Microalgae as a source for VLC-PUFA production. In: Nakamura, Y., Li-Beisson, Y. (Eds.), Lipids in Plant and Algae Development. Subcellular Biochemistry, Vol. 86. Springer, Cham, p.471–510. http://dx.doi.org/10.1007/978-3-319-25979-6_19

    Article  Google Scholar 

  • Lewis, K.D., Huang, W.F., Zhang, X.H., et al., 2016. Toxicological evaluation of arachidonic acid (ARA)-rich oil and docosahexaenoic acid (DHA)-rich oil. Food Chem. Toxicol., 96(25):133–144. http://dx.doi.org/10.1016/j.fct.2016.07.026

    Article  CAS  PubMed  Google Scholar 

  • Li, H.B., Cheng, K.W., Wong, C.C., et al., 2007. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem., 102(3):771–776. http://dx.doi.org/10.1016/j.foodchem.2006.06.022

    Article  CAS  Google Scholar 

  • Li, M.H., Robinson, E.H., Tucke, C.S., et al., 2009. Effects of dried algae Schizochytrium sp., a rich source of docosahexaenoic acid, on growth, fatty acid composition, and sensory quality of channel catfish Ictalurus punctatus. Aquaculture, 292(3-4):232–236. http://dx.doi.org/10.1016/j.aquaculture.2009.04.033

    Article  CAS  Google Scholar 

  • Li, N., Shi, J., Wang, K., 2014. Profile and antioxidant activity of phenolic extracts from 10 crabapples (Malus wild species). J. Agric. Food Chem., 62(3):574–581. http://dx.doi.org/10.1021/jf404542d

    Article  CAS  PubMed  Google Scholar 

  • Ling, X., Guo, J., Liu, X., et al., 2015. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310. Bioresour. Technol., 184:139–147. http://dx.doi.org/10.1016/j.biortech.2014.09.130

    Article  CAS  PubMed  Google Scholar 

  • Lippmeier, J.C., Crawford, K.S., Owen, C.B., et al., 2009. Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids, 44(7): 621–630. http://dx.doi.org/10.1007/s11745-009-3311-9

    Article  CAS  PubMed  Google Scholar 

  • López-Alarcón, C., Denicola, A., 2013. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Anal. Chim. Acta, 763:1–10. http://dx.doi.org/10.1016/j.aca.2012.11.051

    Article  PubMed  Google Scholar 

  • Luo, X., Su, P., Zhang, W., 2015. Advances in microalgaederived phytosterols for functional food and pharmaceutical applications. Mar. Drugs, 13(7):4231–4254. http://dx.doi.org/10.3390/md13074231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv, J.W., Yang, X.Q., Li, L.H., 2014. Antioxidant activity and chemical constituents of microalgae oil of Schizochytrium aggregatum. Adv. Mater. Res., 919-921:2022–2029. http://dx.doi.org/10.4028/www.scientific.net/AMR.919-921.2022

    Article  CAS  Google Scholar 

  • Narwal, S., Thakur, V., Sheoran, S., et al., 2014. Antioxidant activity and phenolic content of the Indian wheat varieties. J. Plant Biochem. Biotechnol., 23(1):11–17. http://dx.doi.org/10.1007/s13562-012-0179-1

    Article  CAS  Google Scholar 

  • O'Brien, P., Carrasco-Pozo, C., Speisky, H., 2006. Boldine and its antioxidant or health-promoting properties. Chem.-Biol. Interact., 159(1):1–17. http://dx.doi.org/10.1016/j.cbi.2005.09.002

    Article  PubMed  Google Scholar 

  • Pan, Y., Zhu, J., Wang, H., et al., 2007. Antioxidant activity of ethanolic extract of Cortex fraxini and use in peanut oil. Food Chem., 103(3):913–918. http://dx.doi.org/10.1016/j.foodchem.2006.09.044

    Article  CAS  Google Scholar 

  • Pleissner, D., Eriksen, N.T., 2012. Effects of phosphorous, nitrogen, and carbon limitation on biomass composition in batch and continuous flow cultures of the heterotrophic dinoflagellate Crypthecodinium cohnii. Biotechnol. Bioeng., 109(8):2005–2016. http://dx.doi.org/10.1002/bit.24470

    Article  CAS  PubMed  Google Scholar 

  • Podsędek, A., 2007. Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT-Food Sci. Technol., 40(1):1–11. http://dx.doi.org/10.1016/j.lwt.2005.07.023

    Article  Google Scholar 

  • Saeed, N., Khan, M.R., Shabbir, M., 2012. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med., 12(1):221. http://dx.doi.org/10.1186/1472-6882-12-221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safafar, H., van Wagenen, J., Moller, P., et al., 2015. Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar. Drugs, 13(12): 7339–7356. http://dx.doi.org/10.3390/md13127069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salem, N.Jr., Eggersdorfer, M., 2015. Is the world supply of omega-3 fatty acids adequate for optimal human nutrition? Curr. Opin. Clin. Nutr. Metab. Care, 18(2):147–154. http://dx.doi.org/10.1097/MCO.0000000000000145

    Article  CAS  PubMed  Google Scholar 

  • Samaranayaka, A.G., Li-Chan, E.C., 2011. Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. J. Funct. Foods, 3(4):229–254. http://dx.doi.org/10.1016/j.jff.2011.05.006

    Article  CAS  Google Scholar 

  • Schiavone, A., Chiarini, R., Marzoni, M., et al., 2007. Breast meat traits of Muscovy ducks fed on a microalga (Crypthecodinium cohnii) meal supplemented diet. Brit. Poultry Sci., 48(5):573–579. http://dx.doi.org/10.1080/00071660701615796

    Article  CAS  Google Scholar 

  • Singh, P., Baranwal, M., Reddy, S.M., 2016. Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress. Pharm. Biol., 54(10):2269–2275. http://dx.doi.org/10.3109/13880209.2016.1153660

    Article  CAS  PubMed  Google Scholar 

  • Sugamura, K., Keaney, J.F.Jr., 2011. Reactive oxygen species in cardiovascular disease. Free Radic. Biol. Med., 51(5): 978–992. http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venuste, M., Zhang, X., Shoemaker, C.F., et al., 2013. Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates. Food Funct., 4(5):811–820. http://dx.doi.org/10.1039/c3fo30347k

    Article  CAS  PubMed  Google Scholar 

  • Wu, J.Q., Kosten, T.R., Zhang, X.Y., 2013. Free radicals, antioxidant defense systems, and schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 46(1):200–206. http://dx.doi.org/10.1016/j.pnpbp.2013.02.015

    Article  CAS  Google Scholar 

  • Wu, X., Wu, F., Tong, X., et al., 2013. Emergy-based sustainability assessment of an integrated production system of cattle, biogas, and greenhouse vegetables: insight into the comprehensive utilization of wastes on a large-scale farm in Northwest China. Ecol. Eng., 61(Part A):335–344. http://dx.doi.org/10.1016/j.ecoleng.2013.09.060

    Article  Google Scholar 

  • Ying, L., Kong, D., Gao, Y.Y., et al., 2017. In vitro antioxidant activity of phenolic-enriched extracts from Zhangping Narcissus tea cake and their inhibition on growth and metastatic capacity of 4T1 murine breast cancer cells. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), in press. http://dx.doi.org/10.1631/jzus.B1700162

    Google Scholar 

  • Zeng, W.C., Zhang, Z., Jia, L.R., 2014. Antioxidant activity and characterization of antioxidant polysaccharides from pine needle (Cedrus deodara). Carbohydr. Polym., 108:58–64. http://dx.doi.org/10.1016/j.carbpol.2014.03.022

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-ping Bi or Ying-jie Wu.

Additional information

Project supported by the Shandong Academy of Agriculture Sciences (No. 2015YQN32), the Ministry of Science and Technology of China (No. 2014DFA32120), and the National Natural Science Foundation of China (No. 81471000)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Jh., Wang, Y., Sun, J. et al. Antioxidant activity of alcohol aqueous extracts of Crypthecodinium cohnii and Schizochytrium sp.. J. Zhejiang Univ. Sci. B 18, 797–806 (2017). https://doi.org/10.1631/jzus.B1600367

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600367

Key words

CLC number

关键词

Navigation