Skip to main content

Advertisement

Log in

Antioxidant potential of methanolic and aqueous extracts of Chnoospora minima, Padina gymnospora and Sargassum cymosum (Ochrophyta, Phaeophyceae)

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Brown seaweeds are reported to have high antioxidant activity due to the rich composition in phenolic compounds. In this way, they present potential as functional ingredients and additives for food, feed, cosmeceutical and pharmaceutical industries. The objective of this study was to evaluate the antioxidant potential of methanolic and aqueous extracts of three species of brown algae by five in vitro assays, in order to contribute to screening of functional foods ingredients, and to the search for natural antioxidants from marine alga biomass matrix. The ABTS, DPPH, FRAP and iron-chelating assays were used for analysis of antioxidant activity, and the Folin-Ciocalteu assay for the quantification of total phenolic compounds. The methanolic and aqueous extracts of Padina gymnospora and Sargassum cymosum showed up to 50% of antioxidant potential for the five assays, and Chnoospora minima presented antioxidant potential up to 50% only for ABTS assay. Comparing the extracts, aqueous extracts of C. minima and S. cymosum had higher antioxidant activities and phenolic compounds than methanolic extracts, whereas for P. gymnospora the methanolic extracts had greater activities. To integrate the results of antioxidant potential, a total antioxidant capacity index was calculated, classifying the extract potential in reactivity order. It was verified that the methanolic extract of P. gymnospora had the highest antioxidant activity and content of phenolic compounds, indicating the potential of this species in the search for natural antioxidant substances and suitable candidate for further studies as food and functional ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abirami RG, Kowsalya S (2017) Quantification and correlation study on derived phenols and antioxidant activity of seaweeds from Gulf of Mannar. J Herbs Spices Med Plants 23:9–17

    Article  CAS  Google Scholar 

  • Balanquit BJR, Fuentes RG (2015) Preliminary phycochemical screening and antioxidant activity of some brown algae Sargassum species for Lawaan, Eastern Samar. J Nat Stud 14:12–21

    Google Scholar 

  • Bianco EM, Krug JL, Zimath PL, Kroger A, Paganelli CJ, Boeder AM, Santos L, Tenfen A, Ribeiro SM, Kuroshima KN, Alberton MD, Cordova CMM, Rebelo RA (2015) Antimicrobial (including antimollicutes), antioxidant and anticholinesterase activities of Brazilian and Spanish marine organisms – evaluation of extracts and pure compounds. Rev Bras Farmacogn 25:668–676

    Article  CAS  Google Scholar 

  • Catarino MD, Amarante SJ, Mateus N, Silva AMS, Cardoso SM (2021) Brown algae phlorotannins: A marine alternative to break the oxidative stress, inflammation and cancer network. Foods 10:1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Bertin R, Froldi G (2013) EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chem 138:414–420

    Article  CAS  PubMed  Google Scholar 

  • Cofrades S, López-López I, Bravo L, Ruiz-Capillas C, Bastida S, Larrea MT, Jiménez-Colmenero F (2010) Nutritional and antioxidant properties of different brown and red Spanish edible seaweeds. Food Sci Technol Int 16:361–370

    Article  CAS  PubMed  Google Scholar 

  • Cox S, Abu-Ghannam N, Gupta S (2010) An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int Food Res J 17:205–220

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Fernando IPS, Kim M, Son KT, Jeong Y, Jeon YJ (2016) Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach. J Med Food 19:615–628

  • Frankel EN, Meyer AS (2000) The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J Sci Food Agric 80:1925–1941

    Article  CAS  Google Scholar 

  • Gordon MH (1990) The mechanism of antioxidant action in vitro. In: Hudson BJF (ed) Food Antioxidants. Springer, Dordrecht, pp 1–18

    Google Scholar 

  • Gulcin I (2020) Antioxidants and antioxidant methods: an updated overview. Arch Toxicol 94:651–715

    Article  CAS  PubMed  Google Scholar 

  • Harb TB, Torres PB, Pires JS, Santos DYAC, Chow F (2016) Ensaio em microplaca do potencial antioxidante através do sistema quelante de metais para extratos de algas. Instituto de Biociências, Universidade de São Paulo, pp 1–5

  • Harb TB, Veja J, Bonomi-Barufi J, Casas V, Abdala-Díaz R, Figueroa FL, Chow F (2023) Brazilian beach-cast seaweeds: Antioxidant, photoprotection and cytotoxicity properties. Waste Biomass Valor 14:2249–2265

    Article  CAS  Google Scholar 

  • LeBlanc AM, Luerce TD, Miyoshi A, Azevedo V, LeBlanc JG (2018) Functional food biotechnology: The use of native and genetically engineered lactic acid bacteria. In: Barh D, Azevedo V (eds) Omics Technologies and Bio-Engineering. Academic Press, NY pp 105–128

  • Machu L, Misurcova L, Ambrozova JV, Orsavova J, Mlcek J, Sochor J, Jurikova T (2015) Phenolic content and antioxidant capacity in algal food products. Molecules 20:1118–1133

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157:183–193

    Article  CAS  Google Scholar 

  • Murugan K, Iyer VV (2013) Differential growth inhibition of cancer cell lines and antioxidant activity of extracts of red, brown, and green marine algae. In Vitro Cell Dev Biol Anim 49:324–334

    Article  CAS  PubMed  Google Scholar 

  • Petcu CD, Tăpăloagă D, Mihai OD, Gheorghe-Irimia RA, Negoiță C, Georgescu IM, Tăpăloagă PR, Borda C, Ghimpețeanu OM (2023) Harnessing natural antioxidants for enhancing food shelf life: Exploring sources and applications in the food industry. Foods 12:3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pires J, Torres PB, Santos DYAC, Chow F (2017a) Ensaio em microplaca do potencial antioxidante através do método de sequestro do radical livre DPPH para extratos de algas. Instituto de Biociências, Universidade de São Paulo, pp 1–6

  • Pires JS, Torres PB, Santos DYAC, Chow F (2017b) Ensaio em microplaca de substâncias redutoras pelo método do Folin-Ciocalteu para extratos de algas. Instituto de Biociências, Universidade de São Paulo, pp 1–5

  • Praveen NK, Chakraborty K (2013) Antioxidant and anti-inflammatory potential of the aqueous extract and polysaccharide fraction from brown marine macroalgae Padina sp. from Gulf of Mannar of Peninsular India. J Coast Life Med 1:39–49

  • Polo LK, Chow F (2022) Variation of antioxidant capacity and antiviral activity of the brown seaweed Sargassum filipendula (Fucales, Ochrophyta) under UV radiation treatments. Appl Phycol 3:260–273

    Article  Google Scholar 

  • Santos JP, Torres PB, Santos DYAC, Motta LB, Chow F (2019) Seasonal effects on antioxidant and anti-HIV activities of Brazilian seaweeds. J Appl Phycol 31:1333–1341

    Article  Google Scholar 

  • Seeram NP, Aviram M, Zhang Y, Henning SM, Feng L, Dreher M, Heber D (2008) Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J Agric Food Chem 56:1415–1422

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219

    Article  CAS  PubMed  Google Scholar 

  • Tenorio-Rodriguez PA, Murillo-Álvarez JI, Campa-Cordova AI, Angulo C (2017) Antioxidant screening and phenolic content of ethanol extracts of selected Baja California Peninsula macroalgae. J Food Sci Technol 54:422–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres PB, Pires JS, Santos DYAC, Chow F (2017) Ensaio do potencial antioxidante de extratos de algas através do sequestro do ABTS•+ em microplaca. Instituto de Biociências, Universidade de São Paulo, pp 1–4

  • Urrea-Victoria V, Pires J, Torres PB, Santos DYAC, Chow F (2016) Ensaio antioxidante em microplaca do poder de redução do ferro (FRAP) para extratos de algas. Instituto de Biociências, Universidade de São Paulo, pp 1–6

  • Urrea-Victoria V, Furlan CM, Santos DYAC, Chow F (2022) Antioxidant potential of two Brazilian seaweeds in response to temperature: Pyropia spiralis (red alga) and Sargassum stenophyllum (brown alga). J Exp Mar Biol 549:151706

    Article  Google Scholar 

  • Van Duyn MAS, Pivonka E (2000) Overview of the health benefits of fruit and vegetable consumption for the dietetics professional. J Am Diet Assoc 100:1511–1521

    Article  PubMed  Google Scholar 

  • Vega J, Álvarez-Gómez F, Güenaga L, Figueroa FL, Gómez-Pinchetti JL (2020) Antioxidant activity of extracts from marine macroalgae, wild-collected and cultivated, in an integrated multi-trophic aquaculture system. Aquaculture 522:735088

    Article  CAS  Google Scholar 

  • Wang J, Zhang Q, Zhang Z, Zhien L (2008) Antioxidant activity of sulfated polysaccharides fractions extracted from Laminaria japonica. Int J Biol Macromol 42:127–132

    Article  PubMed  Google Scholar 

  • Wang T, Jónsdóttir R, Ólafsdóttir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from icelandic seaweeds. Food Chem 116:240–248

    Article  CAS  Google Scholar 

  • Wang J, Hu S, Nie S, Yu Q, Xie M (2016) Reviews on mechanisms of in vitroantioxidant activity of polysaccharides. Oxid Med Cell Longev 2016:5692852

    Google Scholar 

  • Zubia M, Robledo D, Freile-Pelegrin Y (2007) Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. J Appl Phycol 19:449–458

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the research funding agencies CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for supporting the postgraduate course. AMA thanks CNPq for the scholarship (Proc. 133009/2016–5). FCH thanks FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo—Biota/Fapesp 2013/50731–1) for research grant and CNPq for research productivity grant (303937/2015–7).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the experiments, analyzed, and interpreted the data, draft the manuscript and contributed with a critical revision of the article for important intellectual content and approved the final article.

Corresponding author

Correspondence to Fungyi Chow.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim, A.M., Chow, F. Antioxidant potential of methanolic and aqueous extracts of Chnoospora minima, Padina gymnospora and Sargassum cymosum (Ochrophyta, Phaeophyceae). J Appl Phycol (2023). https://doi.org/10.1007/s10811-023-03160-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10811-023-03160-3

Keywords

Navigation