Skip to main content

Advertisement

Log in

DNA damage response is hijacked by human papillomaviruses to complete their life cycle

人类乳突病毒利用DNA 损伤修复机制完成其生命周期

  • Review
  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

The DNA damage response (DDR) is activated when DNA is altered by intrinsic or extrinsic agents. This pathway is a complex signaling network and plays important roles in genome stability, tumor transformation, and cell cycle regulation. Human papillomaviruses (HPVs) are the main etiological agents of cervical cancer. Cervical cancer ranks as the fourth most common cancer among women and the second most frequent cause of cancer-related death worldwide. Over 200 types of HPVs have been identified and about one third of these infect the genital tract. The HPV life cycle is associated with epithelial differentiation. Recent studies have shown that HPVs deregulate the DDR to achieve a productive life cycle. In this review, I summarize current findings about how HPVs mediate the ataxia-telangiectasia mutated kinase (ATM) and the ATM- and RAD3-related kinase (ATR) DDRs, and focus on the roles that ATM and ATR signalings play in HPV viral replication. In addition, I demonstrate that the signal transducer and activator of transcription-5 (STAT)-5, an important immune regulator, can promote ATM and ATR activations through different mechanisms. These findings may provide novel opportunities for development of new therapeutic targets for HPV-related cancers.

概要

本文总结目前学术界对人类乳突病毒如何利用DNA 损伤修复来完成其复制的认识。DNA 损伤修复对人类乳突病毒复制有不可或缺的作用。乳突病毒通过对许多DNA 损伤因子的调控来控制病毒本身的复制。值得注意的是,病毒通过磷酸化STAT-5 转录因子激活ATM和ATR DNA 损伤修复通路,这意味着在乳突病毒复制的过程中,病毒利用对免疫反应的调节来激活DNA 损伤修复机制,从而达到其复制的目的。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas, A.K., Lichtman, A.H., Pillai, S., 2014. Cellular and Molecular Immunology. Elsevier Saunders, Philadelphia, PA.

    Google Scholar 

  • Aguilar-Quesada, R., Munoz-Gamez, J.A., Martin-Oliva, D., et al., 2007. Interaction between ATM and PARP-1 in response to DNA damage and sensitization of ATM deficient cells through PARP inhibition. BMC Mol. Biol., 8:29. http://dx.doi.org/10.1186/1471-2199-8-29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ai, W., Narahari, J., Roman, A., 2000. Yin yang 1 negatively regulates the differentiation-specific E1 promoter of human papillomavirus type 6. J. Virol., 74(11):5198–5205. http://dx.doi.org/10.1128/JVI.74.11.5198-5205.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali, A., Zhang, J., Bao, S., et al., 2004. Requirement of protein phosphatase 5 in DNA-damage-induced ATM activation. Genes Dev., 18(3):249–254. http://dx.doi.org/10.1101/gad.1176004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anacker, D.C., Gautam, D., Gillespie, K.A., et al., 2014. Productive replication of human papillomavirus 31 requires DNA repair factor NBS1. J. Virol., 88(15):8528–8544. http://dx.doi.org/10.1128/JVI.00517-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atamna, H., Cheung, I., Ames, B.N., 2000. A method for detecting abasic sites in living cells: age-dependent changes in base excision repair. PNAS, 97(2):686–691. http://dx.doi.org/10.1073/pnas.97.2.686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakr, A., Oing, C., Kocher, S., et al., 2015. Involvement of ATM in homologous recombination after end resection and RAD51 nucleofilament formation. Nucleic Acids Res., 43(6):3154–3166. http://dx.doi.org/10.1093/nar/gkv160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee, N.S., Wang, H.K., Broker, T.R., et al., 2011. Human papillomavirus (HPV) E7 induces prolonged G2 following S phase reentry in differentiated human keratinocytes. J. Biol. Chem., 286(17):15473–15482. http://dx.doi.org/10.1074/jbc.M110.197574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banin, S., Moyal, L., Shieh, S., et al., 1998. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 281(5383):1674–1677. http://dx.doi.org/10.1126/science.281.5383.1674

    Article  CAS  PubMed  Google Scholar 

  • Beglin, M., Melar-New, M., Laimins, L., 2009. Human papillomaviruses and the interferon response. J. Interferon Cytokine Res., 29(9):629–635. http://dx.doi.org/10.1089/jir.2009.0075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beishline, K., Kelly, C.M., Olofsson, B.A., et al., 2012. Sp1 facilitates DNA double-strand break repair through a nontranscriptional mechanism. Mol. Cell. Biol., 32(18):3790–3799. http://dx.doi.org/10.1128/MCB.00049-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasina, A., de Weyer, I.V., Laus, M.C., et al., 1999. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr. Biol., 9(1):1–10. http://dx.doi.org/10.1016/S0960-9822(99)80041-4

    Article  CAS  PubMed  Google Scholar 

  • Boner, W., Taylor, E.R., Tsirimonaki, E., et al., 2002. A functional interaction between the human papillomavirus 16 transcription/replication factor E2 and the DNA damage response protein TopBP1. J. Biol. Chem., 277(25):22297–22303. http://dx.doi.org/10.1074/jbc.M202163200

    Article  CAS  PubMed  Google Scholar 

  • Bouwman, P., Jonkers, J., 2012. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat. Rev. Cancer, 12(9):587–598. http://dx.doi.org/10.1038/nrc3342

    Article  CAS  PubMed  Google Scholar 

  • Burma, S., Chen, B.P., Murphy, M., et al., 2001. ATM phosphorylates histone H2AX in response to DNA doublestrand breaks. J. Biol. Chem., 276(45):42462–42467. http://dx.doi.org/10.1074/jbc.C100466200

    Article  CAS  PubMed  Google Scholar 

  • Byun, T.S., Pacek, M., Yee, M.C., et al., 2005. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev., 19(9):1040–1052. http://dx.doi.org/10.1101/gad.1301205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canman, C.E., Wolff, A.C., Chen, C.Y., et al., 1994. The p53-dependent G1 cell cycle checkpoint pathway and ataxia-telangiectasia. Cancer Res., 54(19):5054–5058.

    CAS  PubMed  Google Scholar 

  • Carney, J.P., Maser, R.S., Olivares, H., et al., 1998. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell, 93(3):477–486.

    Article  CAS  PubMed  Google Scholar 

  • Cary, R.B., Peterson, S.R., Wang, J., et al., 1997. DNA looping by Ku and the DNA-dependent protein kinase. PNAS, 94(9):4267–4272. http://dx.doi.org/10.1073/pnas.94.9.4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, Y.E., Laimins, L.A., 2000. Microarray analysis identifies interferon-inducible genes and STAT-1 as major transcriptional targets of human papillomavirus type 31. J. Virol., 74(9):4174–4182. http://dx.doi.org/10.1128/JVI.74.9.4174-4182.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chappell, W.H., Gautam, D., Ok, S.T., et al., 2016. Homologous recombination repair factors RAD51 and BRCA1 are necessary for productive replication of human papillomavirus 31. J. Virol., 90(5):2639–2652. http://dx.doi.org/10.1128/JVI.02495-15

    Article  CAS  PubMed Central  Google Scholar 

  • Chen, B., Simpson, D.A., Zhou, Y., et al., 2009. Human papilloma virus type16 E6 deregulates CHK1 and sensitizes human fibroblasts to environmental carcinogens independently of its effect on p53. Cell Cycle, 8(11):1775–1787. http://dx.doi.org/10.4161/cc.8.11.8724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., 2000. Ataxia telangiectasia-related protein is involved in the phosphorylation of BRCA1 following deoxyribonucleic acid damage. Cancer Res., 60(18):5037–5039.

    CAS  PubMed  Google Scholar 

  • Chen, J., Dexheimer, T.S., Ai, Y., et al., 2011. Selective and cell-active inhibitors of the USP1/UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem. Biol., 18(11):1390–1400. http://dx.doi.org/10.1016/j.chembiol.2011.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Gilkes, D.M., Pan, Y., et al., 2005. ATM and Chk2-dependent phosphorylation of mdmx contribute to p53 activation after DNA damage. EMBO J., 24(19):3411–3422. http://dx.doi.org/10.1038/sj.emboj.7600812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, S., Schmidt-Grimminger, D.C., Murant, T., et al., 1995. Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev., 9(19):2335–2349. http://dx.doi.org/10.1101/gad.9.19.2335

    Article  CAS  PubMed  Google Scholar 

  • Cheon, H., Holvey-Bates, E.G., Schoggins, J.W., et al., 2013. IFNβ-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J., 32(20):2751–2763. http://dx.doi.org/10.1038/emboj.2013.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conger, K.L., Liu, J.S., Kuo, S.R., et al., 1999. Human papillomavirus DNA replication. Interactions between the viral E1 protein and two subunits of human DNA polymerase α/PRIMASE. J. Biol. Chem., 274(5):2696–2705. http://dx.doi.org/10.1074/jbc.274.5.2696

    Article  CAS  PubMed  Google Scholar 

  • Cordano, P., Gillan, V., Bratlie, S., et al., 2008. The E6E7 oncoproteins of cutaneous human papillomavirus type 38 interfere with the interferon pathway. Virology, 377(2):408–418. http://dx.doi.org/10.1016/j.virol.2008.04.036

    Article  CAS  PubMed  Google Scholar 

  • Cortez, D., Wang, Y., Qin, J., et al., 1999. Requirement of ATM-dependent phosphorylation of BRCA1 in the DNA damage response to double-strand breaks. Science, 286(5442):1162–1166. http://dx.doi.org/10.1126/science.286.5442.1162

    Article  CAS  PubMed  Google Scholar 

  • Cortez, D., Glick, G., Elledge, S.J., 2004. Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. PNAS, 101(27):10078–10083. http://dx.doi.org/10.1073/pnas.0403410101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coverley, D., Kenny, M.K., Lane, D.P., et al., 1992. A role for the human single-stranded DNA binding protein HSSB/RPA in an early stage of nucleotide excision repair. Nucleic Acids Res., 20(15):3873–3880. http://dx.doi.org/10.1093/nar/20.15.3873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, Y., Riedlinger, G., Miyoshi, K., et al., 2004. Inactivation of STAT5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol. Cell. Biol., 24(18):8037–8047. http://dx.doi.org/10.1128/MCB.24.18.8037-8047.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin, N.J., 2012. DNA repair dysregulation from cancer driver to therapeutic target. Nat. Rev. Cancer, 12(12):801–817. http://dx.doi.org/10.1038/nrc3399

    Article  CAS  PubMed  Google Scholar 

  • D'Amours, D., Jackson, S.P., 2002. The MRE11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol., 3(5):317–327. http://dx.doi.org/10.1038/nrm805

    Article  PubMed  CAS  Google Scholar 

  • Darshan, M.S., Lucchi, J., Harding, E., et al., 2004. The L2 minor capsid protein of human papillomavirus type 16 interacts with a network of nuclear import receptors. J. Virol., 78(22):12179–12188. http://dx.doi.org/10.1128/JVI.78.22.12179-12188.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Klein, A., Muijtjens, M., van Os, R., et al., 2000. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr. Biol., 10(8):479–482. http://dx.doi.org/10.1016/S0960-9822(00)00447-4

    Article  PubMed  Google Scholar 

  • Diamond, M.S., Farzan, M., 2013. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol., 13(1):46–57. http://dx.doi.org/10.1038/nri3344

    Article  CAS  PubMed  Google Scholar 

  • Dianov, G.L., Hubscher, U., 2013. Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res., 41(6):3483–3490. http://dx.doi.org/10.1093/nar/gkt076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimaio, D., Petti, L.M., 2013. The E5 proteins. Virology, 445(1–2):99–114. http://dx.doi.org/10.1016/j.virol.2013.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doan, T., Melvold, R., Viselli, S., et al., 2008. Lippincott’s Illustrated Reviews: Immunology. Wolters Kluwer Health/Lippincott Williams & Wilkins.

    Google Scholar 

  • Donaldson, M.M., Mackintosh, L.J., Bodily, J.M., et al., 2012. An interaction between human papillomavirus 16 E2 and TopBP1 is required for optimum viral DNA replication and episomal genome establishment. J. Virol., 86(23):12806–12815. http://dx.doi.org/10.1128/JVI.01002-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doorbar, J., Quint, W., Banks, L., et al., 2012. The biology and life-cycle of human papillomaviruses. Vaccine, 30(Suppl. 5):F55–F70. http://dx.doi.org/10.1016/j.vaccine.2012.06.083

    Article  CAS  PubMed  Google Scholar 

  • Duensing, S., Munger, K., 2002. The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res., 62(23):7075–7082.

    CAS  PubMed  Google Scholar 

  • Duensing, S., Lee, L.Y., Duensing, A., et al., 2000. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. PNAS, 97(18):10002–10007. http://dx.doi.org/10.1073/pnas.170093297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyson, N., Howley, P.M., Munger, K., et al., 1989. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science, 243(4893):934–937. http://dx.doi.org/10.1126/science.2537532

    Article  CAS  PubMed  Google Scholar 

  • Edwards, T.G., Helmus, M.J., Koeller, K., et al., 2013. Human papillomavirus episome stability is reduced by aphidicolin and controlled by DNA damage response pathways. J. Virol., 87(7):3979–3989. http://dx.doi.org/10.1128/JVI.03473-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eilon, T., Barash, I., 2011. Forced activation of Stat5 subjects mammary epithelial cells to DNA damage and preferential induction of the cellular response mechanism during proliferation. J. Cell. Physiol., 226(3):616–626. http://dx.doi.org/10.1002/jcp.22381

    Article  CAS  PubMed  Google Scholar 

  • Falck, J., Mailand, N., Syljuasen, R.G., et al., 2001. The ATMChk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature, 410(6830):842–847. http://dx.doi.org/10.1038/35071124

    Article  CAS  PubMed  Google Scholar 

  • Falck, J., Petrini, J.H., Williams, B.R., et al., 2002. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat. Genet., 30(3):290–294. http://dx.doi.org/10.1038/ng845

    Article  PubMed  Google Scholar 

  • Fan, X., Liu, Y., Heilman, S.A., et al., 2013. Human papillomavirus E7 induces rereplication in response to DNA damage. J. Virol., 87(2):1200–1210. http://dx.doi.org/10.1128/JVI.02038-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferbeyre, G., Moriggl, R., 2011. The role of STAT5 transcription factors as tumor suppressors or oncogenes. Biochim. Biophys. Acta, 1815(1):104–114. http://dx.doi.org/10.1016/j.bbcan.2010.10.004

    CAS  PubMed  Google Scholar 

  • Fernandez-Capetillo, O., Lee, A., Nussenzweig, M., et al., 2004. H2AX: the histone guardian of the genome. DNA Repair (Amst.), 3(8–9):959–967. http://dx.doi.org/10.1016/j.dnarep.2004.03.024

    Article  CAS  Google Scholar 

  • Floyd, S.R., Pacold, M.E., Huang, Q., et al., 2013. The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature, 498(7453):246–250. http://dx.doi.org/10.1038/nature12147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fradet-Turcotte, A., Moody, C., Laimins, L.A., et al., 2010. Nuclear export of human papillomavirus type 31 E1 is regulated by Cdk2 phosphorylation and required for viral genome maintenance. J. Virol., 84(22):11747–11760. http://dx.doi.org/10.1128/JVI.01445-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frattini, M.G., Laimins, L.A., 1994. Binding of the human papillomavirus E1 origin-recognition protein is regulated through complex formation with the E2 enhancer-binding protein. PNAS, 91(26):12398–12402. http://dx.doi.org/10.1073/pnas.91.26.12398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway, D.A., Laimins, L.A., 2015. Human papillomaviruses: shared and distinct pathways for pathogenesis. Curr. Opin. Virol., 14:87–92. http://dx.doi.org/10.1016/j.coviro.2015.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatei, M., Zhou, B.B., Hobson, K., et al., 2001. Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies. J. Biol. Chem., 276(20):17276–17280. http://dx.doi.org/10.1074/jbc.M011681200

    Article  CAS  PubMed  Google Scholar 

  • Gauson, E.J., Donaldson, M.M., Dornan, E.S., et al., 2015. Evidence supporting a role for TopBP1 and Brd4 in the initiation but not continuation of human papillomavirus 16 E1/E2-mediated DNA replication. J. Virol., 89(9):4980–4991. http://dx.doi.org/10.1128/JVI.00335-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghavidel, A., Schultz, M.C., 2001. TATA binding proteinassociated CK2 transduces DNA damage signals to the RNA polymerase III transcriptional machinery. Cell, 106(5):575–584. http://dx.doi.org/10.1016/S0092-8674(01)00473-1

    Article  CAS  PubMed  Google Scholar 

  • Gillespie, K.A., Mehta, K.P., Laimins, L.A., et al., 2012. Human papillomaviruses recruit cellular DNA repair and homologous recombination factors to viral replication centers. J. Virol., 86(17):9520–9526. http://dx.doi.org/10.1128/JVI.00247-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodarzi, A.A., Jonnalagadda, J.C., Douglas, P., et al., 2004. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2a. EMBO J., 23(22):4451–4461. http://dx.doi.org/10.1038/sj.emboj.7600455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodarzi, A.A., Noon, A.T., Deckbar, D., et al., 2008. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell, 31(2):167–177. http://dx.doi.org/10.1016/j.molcel.2008.05.017

    Article  CAS  PubMed  Google Scholar 

  • Groner, B., 2002. Transcription factor regulation in mammary epithelial cells. Domest. Anim. Endocrinol., 23(1–2):25–32. http://dx.doi.org/10.1016/S0739-7240(02)00142-X

    Article  CAS  PubMed  Google Scholar 

  • Gunasekharan, V., Laimins, L.A., 2013. Human papillomaviruses modulate microRNA 145 expression to directly control genome amplification. J. Virol., 87(10):6037–6043. http://dx.doi.org/10.1128/JVI.00153-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunasekharan, V., Hache, G., Laimins, L., 2012. Differentiationdependent changes in levels of C/EBPβ repressors and activators regulate human papillomavirus type 31 late gene expression. J. Virol., 86(9):5393–5398. http://dx.doi.org/10.1128/JVI.07239-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley, K.A., Alexander, K.A., 2002. Human TATA binding protein inhibits human papillomavirus type 11 DNA replication by antagonizing E1-E2 protein complex formation on the viral origin of replication. J. Virol., 76(10):5014–5023. http://dx.doi.org/10.1128/JVI.76.10.5014-5023.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebner, C., Beglin, M., Laimins, L.A., 2007. Human papillomavirus E6 proteins mediate resistance to interferoninduced growth arrest through inhibition of p53 acetylation. J. Virol., 81(23):12740–12747. http://dx.doi.org/10.1128/JVI.00987-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebner, C.M., Laimins, L.A., 2006. Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev. Med. Virol., 16(2):83–97. http://dx.doi.org/10.1002/rmv.488

    Article  CAS  PubMed  Google Scholar 

  • Heltemes-Harris, L.M., Farrar, M.A., 2012. The role of STAT5 in lymphocyte development and transformation. Curr. Opin. Immunol., 24(2):146–152. http://dx.doi.org/10.1016/j.coi.2012.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrero, R., Hildesheim, A., Bratti, C., et al., 2000. Populationbased study of human papillomavirus infection and cervical neoplasia in rural Costa Rica. J. Natl. Cancer Inst., 92(6):464–474. http://dx.doi.org/10.1093/jnci/92.6.464

    Article  CAS  PubMed  Google Scholar 

  • Ho, G.Y., Burk, R.D., Klein, S., et al., 1995. Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia. J. Natl. Cancer Inst., 87(18):1365–1371. http://dx.doi.org/10.1093/jnci/87.18.1365

    Article  CAS  PubMed  Google Scholar 

  • Hollingworth, R., Grand, R.J., 2015. Modulation of DNA damage and repair pathways by human tumour viruses. Viruses, 7(5):2542–2591. http://dx.doi.org/10.3390/v7052542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, S., Laimins, L.A., 2013a. The JAK-STAT transcriptional regulator, STAT-5, activates the ATM DNA damage pathway to induce HPV 31 genome amplification upon epithelial differentiation. PLoS Pathog., 9(4):e1003295. http://dx.doi.org/10.1371/journal.ppat.1003295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, S., Laimins, L.A., 2013b. Regulation of the life cycle of HPVs by differentiation and the DNA damage response. Future Microbiol., 8(12):1547–1557. http://dx.doi.org/10.2217/fmb.13.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, S., Mehta, K.P., Laimins, L.A., 2011. Suppression of STAT-1 expression by human papillomaviruses is necessary for differentiation-dependent genome amplification and plasmid maintenance. J. Virol., 85(18):9486–9494. http://dx.doi.org/10.1128/JVI.05007-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, S., Dutta, A., Laimins, L.A., 2015a. The acetyltransferase Tip60 is a critical regulator of the differentiationdependent amplification of human papillomaviruses. J. Virol., 89(8):4668–4675. http://dx.doi.org/10.1128/JVI.03455-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, S., Cheng, S., Iovane, A., et al., 2015b. STAT-5 regulates transcription of the topoisomerase IIβ-binding protein 1 (TopBP1) gene to activate the ATR pathway and promote human papillomavirus replication. MBio, 6(6):e02006-e02015. http://dx.doi.org/10.1128/mBio.02006-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoskins, E.E., Morreale, R.J., Werner, S.P., et al., 2012. The fanconi anemia pathway limits human papillomavirus replication. J. Virol., 86(15):8131–8138. http://dx.doi.org/10.1128/JVI.00408-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howie, H.L., Koop, J.I., Weese, J., et al., 2011. Beta-HPV 5 and 8 E6 promote p300 degradation by blocking AKT/ p300 association. PLoS Pathog., 7(8):e1002211. http://dx.doi.org/10.1371/journal.ppat.1002211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes, F.J., Romanos, M.A., 1993. E1 protein of human papillomavirus is a DNA helicase/ATPase. Nucleic Acids Res., 21(25):5817–5823. http://dx.doi.org/10.1093/nar/21.25.5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huibregtse, J.M., Scheffner, M., Howley, P.M., 1991. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J., 10(13):4129–4135.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iftner, T., Elbel, M., Schopp, B., et al., 2002. Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1. EMBO J., 21(17):4741–4748. http://dx.doi.org/10.1093/emboj/cdf443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson, S.P., Bartek, J., 2009. The DNA-damage response in human biology and disease. Nature, 461(7267):1071–1078. http://dx.doi.org/10.1038/nature08467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang, M.K., Shen, K., McBride, A.A., 2014. Papillomavirus genomes associate with Brd4 to replicate at fragile sites in the host genome. PLoS Pathog., 10(5):e1004117. http://dx.doi.org/10.1371/journal.ppat.1004117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janssens, S., Tschopp, J., 2006. Signals from within: the DNAdamage-induced NF-κB response. Cell Death Differ., 13(5):773–784. http://dx.doi.org/10.1038/sj.cdd.4401843

    Article  CAS  PubMed  Google Scholar 

  • Jazayeri, A., Falck, J., Lukas, C., et al., 2006. ATM-and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol., 8(1):37–45. http://dx.doi.org/10.1038/ncb1337

    Article  CAS  PubMed  Google Scholar 

  • Kadaja, M., Isok-Paas, H., Laos, T., et al., 2009. Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLoS Pathog., 5(4):e1000397. http://dx.doi.org/10.1371/journal.ppat.1000397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kajitani, N., Satsuka, A., Kawate, A., et al., 2012. Productive lifecycle of human papillomaviruses that depends upon squamous epithelial differentiation. Front. Microbiol., 3:152. http://dx.doi.org/10.3389/fmicb.2012.00152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanginakudru, S., Desmet, M., Thomas, Y., et al., 2015. Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication. Virology, 478:135–142. http://dx.doi.org/10.1016/j.virol.2015.01.011

    Article  PubMed Central  CAS  Google Scholar 

  • Kitagawa, R., Bakkenist, C.J., McKinnon, P.J., et al., 2004. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev., 18(12):1423–1438. http://dx.doi.org/10.1101/gad.1200304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kivi, N., Greco, D., Auvinen, P., et al., 2008. Genes involved in cell adhesion, cell motility and mitogenic signaling are altered due to HPV 16 E5 protein expression. Oncogene, 27(18):2532–2541. http://dx.doi.org/10.1038/sj.onc.1210916

    Article  CAS  PubMed  Google Scholar 

  • Koganti, S., Hui-Yuen, J., McAllister, S., et al., 2014. STAT3 interrupts ATR-Chk1 signaling to allow oncovirusmediated cell proliferation. PNAS, 111(13):4946–4951. http://dx.doi.org/10.1073/pnas.1400683111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai, A., Dunphy, W.G., 2003. Repeated phosphopeptide motifs in Claspin mediate the regulated binding of Chk1. Nat. Cell Biol., 5(2):161–165. http://dx.doi.org/10.1038/ncb921

    Article  CAS  PubMed  Google Scholar 

  • Kumagai, A., Lee, J., Yoo, H.Y., et al., 2006. TopBP1 activates the ATR-ATRIP complex. Cell, 124(5):943–955. http://dx.doi.org/10.1016/j.cell.2005.12.041

    Article  CAS  PubMed  Google Scholar 

  • Langsfeld, E.S., Bodily, J.M., Laimins, L.A., 2015. The deacetylase sirtuin 1 regulates human papillomavirus replication by modulating histone acetylation and recruitment of DNA damage factors NBS1 and RAD51 to viral genomes. PLoS Pathog., 11(9):e1005181. http://dx.doi.org/10.1371/journal.ppat.1005181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, J., Kumagai, A., Dunphy, W.G., 2001. Positive regulation of Wee1 by Chk1 and 14-3-3 proteins. Mol. Biol. Cell, 12(3):551–563. http://dx.doi.org/10.1091/mbc.12.3.551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J.H., Paull, T.T., 2004. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science, 304(5667):93–96. http://dx.doi.org/10.1126/science.1091496

    Article  CAS  PubMed  Google Scholar 

  • Lehoux, M., Gagnon, D., Archambault, J., 2014. E1-mediated recruitment of a UAF1-USP deubiquitinase complex facilitates human papillomavirus DNA replication. J. Virol., 88(15):8545–8555. http://dx.doi.org/10.1128/JVI.00379-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao, S., Deng, D., Zhang, W., et al., 2013. Human papillomavirus 16/18 E5 promotes cervical cancer cell proliferation, migration and invasion in vitro and accelerates tumor growth in vivo. Oncol. Rep., 29(1):95–102. http://dx.doi.org/10.3892/or.2012.2106

    CAS  PubMed  Google Scholar 

  • Liu, K., Lin, F.T., Ruppert, J.M., et al., 2003. Regulation of E2F1 by BRCT domain-containing protein TopBP1. Mol. Cell. Biol., 23(9):3287–3304. http://dx.doi.org/10.1128/MCB.23.9.3287-3304.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Q., Guntuku, S., Cui, X.S., et al., 2000. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev., 14(12):1448–1459.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longworth, M.S., Laimins, L.A., 2004. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol. Mol. Biol. Rev., 68(2):362–372. http://dx.doi.org/10.1128/MMBR.68.2.362-372.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longworth, M.S., Wilson, R., Laimins, L.A., 2005. HPV31 E7 facilitates replication by activating E2F2 transcription through its interaction with HDACs. EMBO J., 24(10):1821–1830. http://dx.doi.org/10.1038/sj.emboj.7600651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord, C.J., Ashworth, A., 2012. The DNA damage response and cancer therapy. Nature, 481(7381):287–294. http://dx.doi.org/10.1038/nature10760

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka, S., Huang, M., Elledge, S.J., 1998. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science, 282(5395):1893–1897. http://dx.doi.org/10.1126/science.282.5395.1893

    Article  CAS  PubMed  Google Scholar 

  • Matt, S., Hofmann, T.G., 2016. The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell. Mol. Life Sci., 73(15):2829–2850. http://dx.doi.org/10.1007/s00018-016-2130-4

    Article  CAS  PubMed  Google Scholar 

  • Maya, R., Balass, M., Kim, S.T., et al., 2001. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev., 15(9):1067–1077. http://dx.doi.org/10.1101/gad.886901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBride, A.A., 2013. The papillomavirus E2 proteins. Virology, 445(1–2):57–79. http://dx.doi.org/10.1016/j.virol.2013.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFadden, K., Luftig, M.A., 2013. Interplay between DNA tumor viruses and the host DNA damage response. Curr. Top Microbiol. Immunol., 371:229–257. http://dx.doi.org/10.1007/978-3-642-37765-5_9

    CAS  PubMed  Google Scholar 

  • McKinney, C.C., Hussmann, K.L., McBride, A.A., 2015. The role of the DNA damage response throughout the papillomavirus life cycle. Viruses, 7(5):2450–2469. http://dx.doi.org/10.3390/v7052450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPhillips, M.G., Oliveira, J.G., Spindler, J.E., et al., 2006. Brd4 is required for E2-mediated transcriptional activation but not genome partitioning of all papillomaviruses. J. Virol., 80(19):9530–9543. http://dx.doi.org/10.1128/JVI.01105-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta, K., Gunasekharan, V., Satsuka, A., et al., 2015. Human papillomaviruses activate and recruit SMC1 cohesin proteins for the differentiation-dependent life cycle through association with ctcf insulators. PLoS Pathog., 11(4):e1004763. http://dx.doi.org/10.1371/journal.ppat.1004763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melar-New, M., Laimins, L.A., 2010. Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J. Virol., 84(10):5212–5221. http://dx.doi.org/10.1128/JVI.00078-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mighty, K.K., Laimins, L.A., 2011. p63 is necessary for the activation of human papillomavirus late viral functions upon epithelial differentiation. J. Virol., 85(17):8863–8869. http://dx.doi.org/10.1128/JVI.00750-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, K.M., Tjeertes, J.V., Coates, J., et al., 2010. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat. Struct. Mol. Biol., 17(99):1144–1151. http://dx.doi.org/10.1038/nsmb.1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moiseeva, O., Mallette, F.A., Mukhopadhyay, U.K., et al., 2006. DNA damage signaling and p53-dependent senescence after prolonged β-interferon stimulation. Mol. Biol. Cell, 17(4):1583–1592. http://dx.doi.org/10.1091/mbc.E05-09-0858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moody, C.A., Laimins, L.A., 2009. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog., 5(10):e1000605. http://dx.doi.org/10.1371/journal.ppat.1000605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moody, C.A., Laimins, L.A., 2010. Human papillomavirus oncoproteins: pathways to transformation. Nat. Rev. Cancer, 10(8):550–560. http://dx.doi.org/10.1038/nrc2886

    Article  CAS  PubMed  Google Scholar 

  • Moody, C.A., Fradet-Turcotte, A., Archambault, J., et al., 2007. Human papillomaviruses activate caspases upon epithelial differentiation to induce viral genome amplification. PNAS, 104(49):19541–19546. http://dx.doi.org/10.1073/pnas.0707947104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munger, K., Howley, P.M., 2002. Human papillomavirus immortalization and transformation functions. Virus Res., 89(2):213–228. http://dx.doi.org/10.1016/S0168-1702(02)00190-9

    Article  CAS  PubMed  Google Scholar 

  • Munger, K., Werness, B.A., Dyson, N., et al., 1989. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J., 8(13):4099–4105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myers, J.S., Cortez, D., 2006. Rapid activation of ATR by ionizing radiation requires ATM and MRE11. J. Biol. Chem., 281(14):9346–9350. http://dx.doi.org/10.1074/jbc.M513265200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers, K., Gagou, M.E., Zuazua-Villar, P., et al., 2009. ATR and Chk1 suppress a caspase-3-dependent apoptotic response following DNA replication stress. PLoS Genet., 5(1):e1000324. http://dx.doi.org/10.1371/journal.pgen.1000324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakahara, T., Tanaka, K., Ohno, S., et al., 2015. Activation of NF-κB by human papillomavirus 16 E1 limits E1-dependent viral replication through degradation of E1. J. Virol., 89(9):5040–5059. http://dx.doi.org/10.1128/JVI.00389-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, L.M., Rose, R.C., Moroianu, J., 2002. Nuclear import strategies of high risk HPV16 L1 major capsid protein. J. Biol. Chem., 277(26):23958–23964. http://dx.doi.org/10.1074/jbc.M200724200

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, C.L., McLaughlin-Drubin, M.E., Munger, K., 2008. Delocalization of the microtubule motor dynein from mitotic spindles by the human papillomavirus E7 oncoprotein is not sufficient for induction of multipolar mitoses. Cancer Res., 68(21):8715–8722. http://dx.doi.org/10.1158/0008-5472.CAN-08-1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuovo, G.J., Wu, X., Volinia, S., et al., 2010. Strong inverse correlation between microRNA-125b and human papillomavirus DNA in productive infection. Diagn. Mol. Pathol., 19(3):135–143. http://dx.doi.org/10.1097/PDM.0b013e3181c4daaa

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Connor, M., Bernard, H.U., 1995. Oct-1 activates the epithelial-specific enhancer of human papillomavirus type 16 via a synergistic interaction with NFI at a conserved composite regulatory element. Virology, 207(1):77–88. http://dx.doi.org/10.1006/viro.1995.1053

    Article  PubMed  Google Scholar 

  • O'Connor, M.J., 2015. Targeting the DNA damage response in cancer. Mol. Cell, 60(4):547–560. http://dx.doi.org/10.1016/j.molcel.2015.10.040

    Article  PubMed  CAS  Google Scholar 

  • O'Driscoll, M., Ruiz-Perez, V.L., Woods, C.G., et al., 2003. A splicing mutation affecting expression of ataxiatelangiectasia and Rad3-related protein (ATR) results in seckel syndrome. Nat. Genet., 33(4):497–501. http://dx.doi.org/10.1038/ng1129

    Article  PubMed  CAS  Google Scholar 

  • Offord, E.A., Beard, P., 1990. A member of the activator protein 1 family found in keratinocytes but not in fibroblasts required for transcription from a human papillomavirus type 18 promoter. J. Virol., 64(10):4792–4798.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira, J.G., Colf, L.A., McBride, A.A., 2006. Variations in the association of papillomavirus E2 proteins with mitotic chromosomes. PNAS, 103(4):1047–1052. http://dx.doi.org/10.1073/pnas.0507624103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, J.S., Kim, E.J., Kwon, H.J., et al., 2000. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J. Biol. Chem., 275(10):6764–6769. http://dx.doi.org/10.1074/jbc.275.10.6764

    Article  CAS  PubMed  Google Scholar 

  • Patel, D., Huang, S.M., Baglia, L.A., et al., 1999. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J., 18(18):5061–5072. http://dx.doi.org/10.1093/emboj/18.18.5061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearl, L.H., Schierz, A.C., Ward, S.E., et al., 2015. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer, 15(3):166–180. http://dx.doi.org/10.1038/nrc3891

    Article  CAS  PubMed  Google Scholar 

  • Pedroza-Torres, A., Lopez-Urrutia, E., Garcia-Castillo, V., et al., 2014. MicroRNAs in cervical cancer: evidences for a miRNA profile deregulated by hpv and its impact on radio-resistance. Molecules, 19(5):6263–6281. http://dx.doi.org/10.3390/molecules19056263

    Article  PubMed  CAS  Google Scholar 

  • Poddar, A., Reed, S.C., McPhillips, M.G., et al., 2009. The human papillomavirus type 8 E2 tethering protein targets the ribosomal DNA loci of host mitotic chromosomes. J. Virol., 83(2):640–650. http://dx.doi.org/10.1128/JVI.01936-08

    Article  CAS  PubMed  Google Scholar 

  • Reinson, T., Toots, M., Kadaja, M., et al., 2013. Engagement of the ATR-dependent DNA damage response at the human papillomavirus 18 replication centers during the initial amplification. J. Virol., 87(2):951–964. http://dx.doi.org/10.1128/JVI.01943-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rincon-Orozco, B., Halec, G., Rosenberger, S., et al., 2009. Epigenetic silencing of interferon-κ in human papillomavirus type 16-positive cells. Cancer Res., 69(22):8718–8725. http://dx.doi.org/10.1158/0008-5472.CAN-09-0550

    Article  CAS  PubMed  Google Scholar 

  • Ronco, L.V., Karpova, A.Y., Vidal, M., et al., 1998. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev., 12(13):2061–2072. http://dx.doi.org/10.1101/gad.12.13.2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakakibara, N., Mitra, R., McBride, A.A., 2011. The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci. J. Virol., 85(17):8981–8995. http://dx.doi.org/10.1128/JVI.00541-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satsuka, A., Mehta, K., Laimins, L., 2015. p38MAPK and MK2 pathways are important for the differentiationdependent human papillomavirus life cycle. J. Virol., 89(3):1919–1924. http://dx.doi.org/10.1128/JVI.02712-14

    Article  PubMed  CAS  Google Scholar 

  • Scheffner, M., Werness, B.A., Huibregtse, J.M., et al., 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell, 63(6):1129–1136. http://dx.doi.org/10.1016/0092-8674(90)90409-8

    Article  CAS  PubMed  Google Scholar 

  • Scheffner, M., Huibregtse, J.M., Vierstra, R.D., et al., 1993. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell, 75(3):495–505. http://dx.doi.org/10.1016/0092-8674(93)90384-3

    Article  CAS  PubMed  Google Scholar 

  • Sedman, J., Stenlund, A., 1995. Co-operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro. EMBO J., 14(24):6218–6228.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seebode, C., Lehmann, J., Emmert, S., 2016. Photocarcinogenesis and skin cancer prevention strategies. Anticancer Res., 36(3):1371–1378.

    CAS  PubMed  Google Scholar 

  • Shreeram, S., Demidov, O.N., Hee, W.K., et al., 2006. Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol. Cell, 23(5):757–764. http://dx.doi.org/10.1016/j.molcel.2006.07.010

    Article  CAS  PubMed  Google Scholar 

  • Smith, J., Tho, L.M., Xu, N., et al., 2010. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv. Cancer Res., 108:73–112. http://dx.doi.org/10.1016/B978-0-12-380888-2.00003-0

    Article  CAS  PubMed  Google Scholar 

  • Smith, J.A., White, E.A., Sowa, M.E., et al., 2010. Genomewide siRNA screen identifies SMCX, EP400, and Brd4 as E2-dependent regulators of human papillomavirus oncogene expression. PNAS, 107(8):3752–3757. http://dx.doi.org/10.1073/pnas.0914818107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, S., Gulliver, G.A., Lambert, P.F., 1998. Human papillomavirus type 16 E6 and E7 oncogenes abrogate radiation-induced DNA damage responses in vivo through p53-dependent and p53-independent pathways. PNAS, 95(5):2290–2295. http://dx.doi.org/10.1073/pnas.95.5.2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen, C.S., Hansen, L.T., Dziegielewski, J., et al., 2005. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat. Cell Biol., 7(2):195–201. http://dx.doi.org/10.1038/ncb1212

    Article  CAS  PubMed  Google Scholar 

  • Spardy, N., Duensing, A., Charles, D., et al., 2007. The human papillomavirus type 16 E7 oncoprotein activates the Fanconi anemia (FA) pathway and causes accelerated chromosomal instability in FA cells. J. Virol., 81(23):13265–13270. http://dx.doi.org/10.1128/JVI.01121-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spardy, N., Duensing, A., Hoskins, E.E., et al., 2008. HPV-16 E7 reveals a link between DNA replication stress, fanconi anemia D2 protein, and alternative lengthening of telomere-associated promyelocytic leukemia bodies. Cancer Res., 68(23):9954–9963. http://dx.doi.org/10.1158/0008-5472.CAN-08-0224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spardy, N., Covella, K., Cha, E., et al., 2009. Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin. Cancer Res., 69(17):7022–7029. http://dx.doi.org/10.1158/0008-5472.CAN-09-0925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperka, T., Wang, J., Rudolph, K.L., 2012. DNA damage checkpoints in stem cells, ageing and cancer. Nat. Rev. Mol. Cell Biol., 13(9):579–590. http://dx.doi.org/10.1038/nrm3420

    Article  CAS  PubMed  Google Scholar 

  • Srivenugopal, K.S., Ali-Osman, F., 2002. The DNA repair protein, O6-methylguanine-DNA methyltransferase is a proteolytic target for the E6 human papillomavirus oncoprotein. Oncogene, 21(38):5940–5945. http://dx.doi.org/10.1038/sj.onc.1205762

    Article  CAS  PubMed  Google Scholar 

  • Stanley, M.A., 2012. Epithelial cell responses to infection with human papillomavirus. Clin. Microbiol. Rev., 25(2):215–222. http://dx.doi.org/10.1128/CMR.05028-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steger, G., Corbach, S., 1997. Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. J. Virol., 71(1):50–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stubenrauch, F., Hummel, M., Iftner, T., et al., 2000. The E8 E2C protein, a negative regulator of viral transcription and replication, is required for extrachromosomal maintenance of human papillomavirus type 31 in keratinocytes. J. Virol., 74(3):1178–1186. http://dx.doi.org/10.1128/JVI.74.3.1178-1186.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stunkel, W., Bernard, H.U., 1999. The chromatin structure of the long control region of human papillomavirus type 16 represses viral oncoprotein expression. J. Virol., 73(3):1918–1930.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., Jiang, X., Chen, S., et al., 2005. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. PNAS, 102(37):13182–13187. http://dx.doi.org/10.1073/pnas.0504211102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi, T., Garcia-Higuera, I., Xu, B., et al., 2002. Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell, 109(4):459–472. http://dx.doi.org/10.1016/S0092-8674(02)00747-X

    Article  CAS  PubMed  Google Scholar 

  • Thomas, J.T., Hubert, W.G., Ruesch, M.N., et al., 1999. Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. PNAS, 96(15):8449–8454. http://dx.doi.org/10.1073/pnas.96.15.8449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, M., Narayan, N., Pim, D., et al., 2008. Human papillomaviruses, cervical cancer and cell polarity. Oncogene, 27(55):7018–7030. http://dx.doi.org/10.1038/onc.2008.351

    Article  CAS  PubMed  Google Scholar 

  • Thomas, M.C., Chiang, C.M., 2005. E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol. Cell, 17(2):251–264. http://dx.doi.org/10.1016/j.molcel.2004.12.016

    Article  CAS  PubMed  Google Scholar 

  • Thurn, K.T., Thomas, S., Raha, P., et al., 2013. Histone deacetylase regulation of ATM-mediated DNA damage signaling. Mol. Cancer Ther., 12(10):2078–2087. http://dx.doi.org/10.1158/1535-7163.MCT-12-1242

    Article  CAS  PubMed  Google Scholar 

  • Walker, M., Black, E.J., Oehler, V., et al., 2009. Chk1 C-terminal regulatory phosphorylation mediates checkpoint activation by de-repression of Chk1 catalytic activity. Oncogene, 28(24):2314–2323. http://dx.doi.org/10.1038/onc.2009.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace, N.A., Galloway, D.A., 2014. Manipulation of cellular DNA damage repair machinery facilitates propagation of human papillomaviruses. Semin. Cancer Biol., 26:30–42. http://dx.doi.org/10.1016/j.semcancer.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  • Wallace, N.A., Galloway, D.A., 2015. Novel functions of the human papillomavirus E6 oncoproteins. Annu. Rev. Virol., 2(1):403–423. http://dx.doi.org/10.1146/annurev-virology-100114-055021

    Article  CAS  PubMed  Google Scholar 

  • Wallace, N.A., Robinson, K., Howie, H.L., et al., 2012. HPV 5 and 8 E6 abrogate ATR activity resulting in increased persistence of UVB induced DNA damage. PLoS Pathog., 8(7):e1002807. http://dx.doi.org/10.1371/journal.ppat.1002807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace, N.A., Gasior, S.L., Faber, Z.J., et al., 2013. HPV 5 and 8 E6 expression reduces ATM protein levels and attenuates LINE-1 retrotransposition. Virology, 443(1):69–79. http://dx.doi.org/10.1016/j.virol.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  • Wallace, N.A., Robinson, K., Galloway, D.A., 2014. Beta human papillomavirus E6 expression inhibits stabilization of p53 and increases tolerance of genomic instability. J. Virol., 88(11):6112–6127. http://dx.doi.org/10.1128/JVI.03808-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace, N.A., Robinson, K., Howie, H.L., et al., 2015. β-HPV 5 and 8 E6 disrupt homology dependent double strand break repair by attenuating BRCA1 and BRCA2 expression and foci formation. PLoS Pathog., 11(3):e1004687. http://dx.doi.org/10.1371/journal.ppat.1004687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan, G., Mathur, R., Hu, X., et al., 2011. miRNA response to DNA damage. Trends Biochem. Sci., 36(9):478–484. http://dx.doi.org/10.1016/j.tibs.2011.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Wang, H.K., Li, Y., et al., 2014. MicroRNAs are biomarkers of oncogenic human papillomavirus infections. PNAS, 111(11):4262–4267. http://dx.doi.org/10.1073/pnas.1401430111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Taniguchi, T., 2013. MicroRNAs and DNA damage response: implications for cancer therapy. Cell Cycle, 12(1):32–42. http://dx.doi.org/10.4161/cc.23051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, D.E., Negorev, D., Peng, H., et al., 2006. KAP1, a novel substrate for PIKK family members, colocalizes with numerous damage response factors at DNA lesions. Cancer Res., 66(24):11594–11599. http://dx.doi.org/10.1158/0008-5472.CAN-06-4138

    Article  CAS  PubMed  Google Scholar 

  • Wise-Draper, T.M., Wells, S.I., 2008. Papillomavirus E6 and E7 proteins and their cellular targets. Front. Biosci., 13:1003–1017. http://dx.doi.org/10.2741/2739

    Article  CAS  PubMed  Google Scholar 

  • Wohlbold, L., Merrick, K.A., De, S., et al., 2012. Chemical genetics reveals a specific requirement for Cdk2 activity in the DNA damage response and identifies Nbs1 as a Cdk2 substrate in human cells. PLoS Genet., 8(8):e1002935. http://dx.doi.org/10.1371/journal.pgen.1002935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, S., Shi, Y., Mulligan, P., et al., 2007. A YY1-INO80 complex regulates genomic stability through homologous recombination-based repair. Nat. Struct. Mol. Biol., 14(12):1165–1172. http://dx.doi.org/10.1038/nsmb1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, S.Y., Lee, A.Y., Hou, S.Y., et al., 2006. Brd4 links chromatin targeting to HPV transcriptional silencing. Genes Dev., 20(17):2383–2396. http://dx.doi.org/10.1101/gad.1448206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, Z., Cui, Y., Watford, W.T., et al., 2006. STAT5a/b are essential for normal lymphoid development and differentiation. PNAS, 103(4):1000–1005. http://dx.doi.org/10.1073/pnas.0507350103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarden, R.I., Pardo-Reoyo, S., Sgagias, M., et al., 2002. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat. Genet., 30(3):285–289. http://dx.doi.org/10.1038/ng837

    Article  PubMed  Google Scholar 

  • Zhang, R., Zhu, L., Zhang, L., et al., 2016. PTEN enhances G2/M arrest in etoposide-treated MCF7 cells through activation of the ATM pathway. Oncol. Rep., 35(5):2707–2714. http://dx.doi.org/10.3892/or.2016.4674

    CAS  PubMed  Google Scholar 

  • Zhang, W., Hong, S., Maniar, K.P., et al., 2016. KLF13 regulates the differentiation-dependent human papillomavirus life cycle in keratinocytes through STAT5 and IL-8. Oncogene, 35:5565–5575. http://dx.doi.org/10.1038/onc.2016.97

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Cho, Y.Y., Petersen, B.L., et al., 2003. Ataxia telangiectasia mutated proteins, mapks, and RSK2 are involved in the phosphorylation of STAT3. J. Biol. Chem., 278(15):12650–12659. http://dx.doi.org/10.1074/jbc.M210368200

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Fan, S., Meng, Q., et al., 2005. BRCA1 interaction with human papillomavirus oncoproteins. J. Biol. Chem., 280(39):33165–33177. http://dx.doi.org/10.1074/jbc.M505124200

    Article  CAS  PubMed  Google Scholar 

  • Zhao, H., Jin, S., Fan, F., et al., 2000. Activation of the transcription factor Oct-1 in response to DNA damage. Cancer Res., 60(22):6276–6280.

    CAS  PubMed  Google Scholar 

  • Zhou, B.B., Chaturvedi, P., Spring, K., et al., 2000. Caffeine abolishes the mammalian G2/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J. Biol. Chem., 275(14):10342–10348. http://dx.doi.org/10.1074/jbc.275.14.10342

    Article  CAS  PubMed  Google Scholar 

  • Ziv, Y., Bielopolski, D., Galanty, Y., et al., 2006. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM-and KAP-1 dependent pathway. Nat. Cell Biol., 8(8):870–876. http://dx.doi.org/10.1038/ncb1446

    Article  CAS  PubMed  Google Scholar 

  • Zou, L., Elledge, S.J., 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science, 300(5625):1542–1548. http://dx.doi.org/10.1126/science.1083430

    Article  CAS  PubMed  Google Scholar 

  • Zur Hausen, H., 2002. Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer, 2(5):342–350. http://dx.doi.org/10.1038/nrc798

    Article  PubMed  CAS  Google Scholar 

  • Zur Hausen, H., 2009. Papillomaviruses in the causation of human cancers—a brief historical account. Virology, 384(2):260–265. http://dx.doi.org/10.1016/j.virol.2008.11.046

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-yuan Hong.

Additional information

ORCID: Shi-yuan HONG, http://orcid.org/0000-0002-0319-5208

Compliance with ethics guidelines

Shi-yuan HONG declares that he has no conflict of interest.

This article does not contain any studies with human or animal subjects performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Sy. DNA damage response is hijacked by human papillomaviruses to complete their life cycle. J. Zhejiang Univ. Sci. B 18, 215–232 (2017). https://doi.org/10.1631/jzus.B1600306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600306

Key words

关键词

CLC number

Navigation