Skip to main content
Log in

Molecular cloning, characterization, and promoter analysis of the isochorismate synthase (AaICS1) gene from Artemisia annua

青蒿异分支酸合酶基因的克隆及功能分析

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Isochorismate synthase (ICS) is a crucial enzyme in the salicylic acid (SA) synthesis pathway. The full-length complementary DNA (cDNA) sequence of the ICS gene was isolated from Artemisia annua L. The gene, named AaICS1, contained a 1710-bp open reading frame, which encoded a protein with 570 amino acids. Bioinformatics and comparative study revealed that the polypeptide protein of AaICS1 had high homology with ICSs from other plant species. Southern blot analysis suggested that AaICS1 might be a single-copy gene. Analysis of the 1470-bp promoter of AaICS1 identified distinct cis-acting regulatory elements, including TC-rich repeats, MYB binding site (MBS), and TCA-elements. An analysis of AaICS1 transcript levels in multifarious tissues of A. annua using quantitative real-time polymerase chain reaction (qRT-PCR) showed that old leaves had the highest transcription levels. AaICS1 was up-regulated under wounding, drought, salinity, and SA treatments. This was corroborated by the presence of the predicted cis-acting elements in the promoter region of AaICS1. Overexpressing transgenic plants and RNA interference transgenic lines of AaICS1 were generated and their expression was compared. High-performance liquid chromatography (HPLC) results from leaf tissue of transgenic A. annua showed an increase in artemisinin content in the overexpressing plants. These results confirm that AaICS1 is involved in the isochorismate pathway.

摘要

目 的

研究青蒿异分支酸合酶的表达模式, 评价其对青蒿素含量的影响。

创新点

该研究首次克隆了青蒿异分支酸合酶基因(AaICS1), 并发现AaICS1 影响青蒿素的合成, 为更有效地开发利用青蒿提供了新思路。

方 法

根据青蒿转录组数据, 利用聚合酶链式反应(PCR)克隆AaICS1 基因和启动子, 并进行多重序列分析和启动子作用元件预测。通过实时定量PCR( qRT-PCR ) 对AaICS1 进行表达分析, 用Southern 杂交分析AaICS1 的拷贝数。构建AaICS1过表达载体和干扰表达载体, 转化青蒿获得转基因植株, 用高效液相色谱法(HPLC)分析青蒿素含量。

结 论

AaICS1 含一个总长为1710 bp 的完整阅读框, 编码570 个氨基酸, 与其它植物的ICS 基因具有较高的相似性。Southern 杂交结果表明AaICS1 为单拷贝(图4), qRT-PCR 结果显示该基因能够响应伤害、干旱、盐胁迫和水杨酸的处理, 处理后基因表达量提高(图6), 和启动子作用元件预测相符。qRT-PCR 结果显示过表达转基因青蒿中AaICS1 表达量提高, 干扰转基因青蒿中该基因表达量降低(图7)。HPLC 显示过表达AaICS1 转基因植株中青蒿素含量提升, 最高可达对照的1.9倍(图8)。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdin, M.Z., Israr, M., Rehman, R.U., et al., 2003. Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. Planta Med., 69(4): 289–299. http://dx.doi.org/10.1055/s-2003-38871

    Article  CAS  PubMed  Google Scholar 

  • Aftab, T., Masroor, M., Khan, A., et al., 2010. Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L. J. Crop Sci. Biotechnol., 13(3): 183–188. http://dx.doi.org/10.1007/s12892-010-0040-3

    Article  Google Scholar 

  • Aquil, S., Husaini, A.M., Abdin, M.Z., et al., 2009. Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Med., 75(13): 1453–1458. http://dx.doi.org/10.1055/s-0029-1185775

    Article  CAS  PubMed  Google Scholar 

  • Baldi, A., Dixit, V.K., 2008. Yield enhancement strategies for artemisinin production by suspension cultures of Artemisia annua. Bioresour. Technol., 99(11): 4609–4614. http://dx.doi.org/10.1016/j.biortech.2007.06.061

    Article  CAS  PubMed  Google Scholar 

  • Banyai, W., Kirdmanee, C., Mii, M., et al., 2010. Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L. Plant Cell Tiss. Organ Cult., 103(2): 255–265. http://dx.doi.org/10.1007/s11240-010-9775-8

    Article  CAS  Google Scholar 

  • Delabays, N., Simonnet, X., Gaudin, M., 2001. The genetics of artemisinin content in Artemisia annua L. and the breeding of high yielding cultivars. Curr. Med. Chem., 8(15): 1795–1801. http://dx.doi.org/10.2174/0929867013371635

    Article  CAS  PubMed  Google Scholar 

  • Duke, M.V., Paul, R.N., Elsohly, H.N., et al., 1994. Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int. J. Plant Sci., 155(3): 365–372. http://dx.doi.org/10.1086/297173

    Article  Google Scholar 

  • Eulgem, T., Rushton, P.J., Schmelzer, E., et al., 1999. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J., 18(17): 4689–4699. http://dx.doi.org/10.1093/emboj/18.17.4689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcion, C., Lohmann, A., Lamodière, E., et al., 2008. Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiol., 147(3): 1279–1287. http://dx.doi.org/10.1104/pp.108.119420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham, I.A., Besser, K., Blumer, S., et al., 2010. The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science, 327(5963): 328–331. http://dx.doi.org/10.1126/science.1182612

    Article  CAS  PubMed  Google Scholar 

  • Guo, X.X., Yang, X.Q., Yang, R.Y., et al., 2010. Salicylic acid and methyl jasmonate but not Rose Bengal enhance artemisinin production through invoking burst of endogenous singlet oxygen. Plant Sci., 178(4): 390–397. http://dx.doi.org/10.1016/j.plantsci.2010.01.014

    Article  CAS  Google Scholar 

  • Haas, B.J., Delcher, A.L., Wortman, J.R., et al., 2004. DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics, 20(18): 3643–3646. http://dx.doi.org/10.1093/bioinformatics/bth397

    Article  CAS  PubMed  Google Scholar 

  • Han, J.L., Liu, B.Y., Ye, H.C., et al., 2006. Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J. Integr. Plant Biol., 48(4): 482–487. http://dx.doi.org/10.1111/j.1744-7909.2006.00208.x

    Article  CAS  Google Scholar 

  • Hunter, L.J.R., Westwood, J.H., Heath, G., et al., 2013. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis. PLoS ONE, 8(6): e66530. http://dx.doi.org/10.1371/journal.pone.0066530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loake, G., Grant, M., 2007. Salicylic acid in plant defence—the players and protagonists. Curr. Opin. Plant Biol., 10(5): 466–472. http://dx.doi.org/10.1016/j.pbi.2007.08.008

    Article  CAS  PubMed  Google Scholar 

  • McCormick, S., Niedermeyer, J., Fry, J., et al., 1986. Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep., 5(2): 81–84. http://dx.doi.org/10.1007/BF00269239

    Article  CAS  PubMed  Google Scholar 

  • Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant., 15(3): 473–497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nafis, T., Akmal, M., Ram, M., et al., 2011. Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain of Artemisia annua L. Plant Biotechnol. Rep., 5(1): 53–60. http://dx.doi.org/10.1007/s11816-010-0156-x

    Article  Google Scholar 

  • Patra, N., Srivastava, A.K., 2014. Enhanced production of artemisinin by hairy root cultivation of Artemisia annua in a modified stirred tank reactor. Appl. Biochem. Biotech., 174(6): 2209–2222. http://dx.doi.org/10.1007/s12010-014-1176-8

    Article  CAS  Google Scholar 

  • Pu, G.B., Ma, D.M., Chen, J.L., et al., 2009. Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep., 28(7): 1127–1135. http://dx.doi.org/10.1007/s00299-009-0713-3

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi, M., Dehghan, S., Fischer, R., et al., 2013. Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius. Plant Signal. Behav., 8(11): e27335. http://dx.doi.org/10.4161/psb.27335

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen, Q., Chen, Y.F., Wang, T., et al., 2012. Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (Asteraceae). Genet. Mol. Res., 11(3): 3298–3309. http://dx.doi.org/10.4238/2012.September.12.13

    Article  CAS  PubMed  Google Scholar 

  • van Tegelen, L.J., Moreno, P.R., Croes, A.F., et al., 1999. Purification and cDNA cloning of isochorismate synthase from elicited cell cultures of Catharanthus roseus. Plant Physiol., 119(2): 705–712. http://dx.doi.org/10.1104/pp.119.2.705

    Article  PubMed  PubMed Central  Google Scholar 

  • Wildermuth, M.C., Dewdney, J., Wu, G., et al., 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414(6863): 562–565. http://dx.doi.org/10.1038/35107108

    Article  CAS  PubMed  Google Scholar 

  • Yang, R.Y., Feng, L.L., Yang, X.Q., et al., 2008. Quantitative transcript profiling reveals down-regulation of a sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants. Planta Med., 74(12): 1510–1516. http://dx.doi.org/10.1055/s-2008-1081333

    Article  CAS  PubMed  Google Scholar 

  • Yin, H., Kjaer, A., Fretté, X.C., et al., 2012. Chitosan oligosaccharide and salicylic acid up-regulate gene expression differently in relation to the biosynthesis of artemisinin in Artemisia annua L. Process Biochem., 47(11): 1559–1562. http://dx.doi.org/10.1016/j.procbio.2011.12.020

    Article  CAS  Google Scholar 

  • Zhang, F., Lu, X., Lv, Z., et al., 2013. Overexpression of the Artemisia orthologue of ABA receptor, AaPYL9, enhances ABA sensitivity and improves artemisinin content in Artemisia annua L. PLoS ONE, 8(2): e56697. http://dx.doi.org/10.1371/journal.pone.0056697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Ding, R., Chai, Y., et al., 2004. Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc. Natl. Acad. Sci. USA, 101(17): 6786–6791. http://dx.doi.org/10.1073/pnas.0401391101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-ya Zhao.

Additional information

Project supported by the National High-Tech R&D Program (863) of China (No. 22011AA100605)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Ly., Zhang, Y., Fu, Xq. et al. Molecular cloning, characterization, and promoter analysis of the isochorismate synthase (AaICS1) gene from Artemisia annua . J. Zhejiang Univ. Sci. B 18, 662–673 (2017). https://doi.org/10.1631/jzus.B1600223

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600223

Key words

关键词

CLC number

Navigation