Skip to main content
Log in

Toxicity comparison of different active fractions extracted from radix Sophorae tonkinensis in zebrafish

使用斑马鱼模型比较山豆根不同有效部位的毒性

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Radix Sophorae tonkinensis (RST) is a widely used herb in Traditional Chinese Medicine (TCM) for treating infectious and inflammatory diseases. However, the toxicity data for RST are limited. The aim of this work is to assess and compare the toxicity of the whole RST extract and its five active fractions using the zebrafish model. Five active fractions of RST were prepared using five different types of solvents, which included dealkalized water, ethanol, n-butyl ethanol, dichloromethane, and diethyl ether. The chemical profiles of the active fractions were determined by high-performance liquid chromatography (HPLC), and the toxicity observed in the zebrafish model was confirmed using mouse models. In the zebrafish model, cardiovascular toxicity was observed for the fraction extracted using diethyl ether, and hepatotoxicity was observed for the whole RST extract and the fractions extracted using water and ethanol, whereas both cardiovascular and hepatic toxicities were observed for the fractions extracted using n-butyl ethanol and dichloromethane. The hepatotoxicity of the fractions extracted using n-butyl ethanol and dichloromethane was also observed in mice. Our findings provide the toxicity data for RST and its five active fractions through modeling in a zebrafish, and indicate that the different fractions may each have a different toxicity, which is helpful for the optimal use of RST in clinical practice.

中文概要

目的

利用斑马鱼模型评价和比较山豆根不同提取方法 提取的有效部位的体内毒性。

创新点

首次在斑马鱼模型中证明山豆根提取方法不同, 有效部位的毒性有明显差异。研究结果有助于指 导山豆根的新药开发与临床应用。

方法

用五种不同的溶剂(去碱水、乙醇、正丁基乙醇、 二氯甲烷和乙醚)提取山豆根,然后通过高效液 相色谱法(HPLC)检测有效部位,将AB 品系斑 马鱼分为对照组(养鱼水处理)和实验组(山豆 根提取物)。实验组根据采用的提取溶剂不同, 分为以下六组:去碱水提取组、乙醇沉提取组、 正丁基乙醇提取组、二氯甲烷提取组和乙醚提取 组以及山豆根总组分组(对照),观察各种山豆 根提取物对斑马鱼的急性毒性与毒性靶器官。

结论

山豆根乙醚提取组诱发斑马鱼心血管毒性(图1); 山豆根去碱水提取组、乙醇沉提取组以及山豆根 总组分组诱发斑马鱼肝脏毒性(图3 和图4);而 山豆根正丁基乙醇提取组和二氯甲烷提取组诱 发斑马鱼心血管毒性(图1 和图2)和肝脏毒性 (图3 和图4)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chai, N.L., Fu, Q., Shi, H., et al., 2012. Oxymatrine liposome attenuates hepatic fibrosis via targeting hepatic stellate cells. World J. Gastroenterol., 18(31):4199–4206. http://dx.doi.org/10.3748/wjg.v18.i31.4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, C.H., Chuang, C.Y., Chen, C.F., 1986. Study of the antipyretic activity of matrine. A lupin alkaloid isolated from Sophora subprostrata. Planta Med., 52(5):343–345. http://dx.doi.org/10.1055/s-2007-969179

    Article  Google Scholar 

  • Chui, C.H., Lau, F.Y., Tang, J.C., et al., 2005. Activities of fresh juice of Scutellaria barbata and warmed water extract of Radix Sophorae Tonkinensis on anti-proliferation and apoptosis of human cancer cell lines. Int. J. Mol. Med., 16(2):337–341. http://dx.doi.org/10.3892/ijmm.16.2.337

    PubMed  Google Scholar 

  • CPC (Chinese Pharmacopoeia Commission), 2015. Pharmacopoeia of the People’s Republic of China (Part I). China Medical Science Press, Beijing, China, p.25–26 (in Chinese).

    Google Scholar 

  • Ding, P.L., Chen, D.F., 2006. Isoprenylated flavonoids from the roots and rhizomes of Sophora tonkinensis. Helv. Chim. Acta, 89(1):103–110. http://dx.doi.org/10.1002/hlca.200690000

    Article  CAS  Google Scholar 

  • Ding, P.L., Huang, H., Zhou, P., et al., 2006. Quinolizidine alkaloids with anti-HBV activity from Sophora tonkinensis. Planta Med., 72(9):854–856. http://dx.doi.org/10.1055/s-2006-946639

    Article  CAS  PubMed  Google Scholar 

  • He, C.M., Cheng, Z.H., Chen, D.F., 2013. Qualitative and quantitative analysis of flavonoids in Sophora tonkinensis by LC/MS and HPLC. Chin. J. Nat. Med., 11(6):690–698. http://dx.doi.org/10.1016/S1875-5364(13)60081-3

    Article  CAS  PubMed  Google Scholar 

  • He, J.H., Guo, S.Y., Zhu, F., et al., 2013. A zebrafish phenotypic assay for assessing drug-induced hepatotoxicity. J. Pharmacol. Toxicol. Methods, 67(1):25–32. http://dx.doi.org/10.1016/j.vascn.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  • Hill, A., 2011. Hepatotoxicity testing in larval zebrafish. In: McGrath, P. (Ed.), Zebrafish: Methods for Assessing Drug Safety and Toxicity. John Wiley & Sons, Inc., Hoboken, NJ, USA, p.89–102. http://dx.doi.org/10.1002/9781118102138.ch8

    Chapter  Google Scholar 

  • Hill, A.J., Teraoka, H., Heideman, W., et al., 2005. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol. Sci., 86(1):6–19. http://dx.doi.org/10.1093/toxsci/kfi110

    Article  CAS  PubMed  Google Scholar 

  • Hill, A., Ball, J., Jones, M., et al., 2008. Implementation of zebrafish toxicity testing between in vitro and in vivo models to advance candidate selection. The 29th Annual Meeting of the American College of Toxicology, Tucson, AZ, USA, p.9–12.

    Google Scholar 

  • Hill, A., Mesens, N., Steemans, M., et al., 2012. Comparisons between in vitro whole cell imaging and in vivo zebrafish-based approaches for identifying potential human hepatotoxicants earlier in pharmaceutical development. Drug Metab. Rev., 44(1):127–140. http://dx.doi.org/10.3109/03602532.2011.645578

    Article  CAS  PubMed  Google Scholar 

  • Jones, K.S., Alimov, A.P., Rilo, H.L., et al., 2008. A high throughput live transparent animal bioassay to identify non-toxic small molecules or genes that regulate vertebrate fat metabolism for obesity drug development. Nutr. Metab. (Lond.), 5:23. http://dx.doi.org/10.1186/1743-7075-5-23

    Article  Google Scholar 

  • Kimmel, C.B., Ballard, W.W., Kimmel, S.R., et al., 1995. Stages of embryonic development of the zebrafish. Dev. Dynam., 203(3):253–310. http://dx.doi.org/10.1002/aja.1002030302

    Article  CAS  Google Scholar 

  • Lee, J.W., Lee, J.H., Lee, C., et al., 2015. Inhibitory constituents of Sophora tonkinensis on nitric oxide production in RAW 264.7 macrophages. Bioorg. Med. Chem. Lett., 25(4): 960–962. http://dx.doi.org/10.1016/j.bmcl.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  • Li, S.J., Yang, J., Qian, X.L., et al., 2011. Experimental study on chronic toxicity in rats caused by water extract components of radix et Rhizoma Sophorae tonkinensise. Chin. J. Pharmacovigil., 8(2):89–92 (in Chinese). http://dx.doi.org/10.3969/j.issn.1672-8629.2011.02.007

    Google Scholar 

  • Li, X.N., Sha, N., Yan, H.X., et al., 2008a. Isoprenylated flavonoids from the roots of Sophora tonkinensis. Phytochem. Lett., 1(3):163–167. http://dx.doi.org/10.1016/j.phytol.2008.08.001

    Article  Google Scholar 

  • Li, X.N., Lu, Z.Q., Chen, G.T., et al., 2008b. NMR spectral assignments of isoprenylated flavanones from Sophora tonkinensis. Magn. Reson. Chem., 46(9):898–902. http://dx.doi.org/10.1002/mrc.2274

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Luan, Y., Li, X., 2012. Study on anti-inflammatory efficacy accompanied by side effects of different components of Sophorae tonkinensis radix et Rhizoma. China J. Chin. Mater. Med., 37(15):2232–2237 (in Chinese). http://dx.doi.org/10.4268/cjcmm20121510

    Google Scholar 

  • Liu, X.S., Jiang, J., Jiao, X.Y., et al., 2006. Matrine-induced apoptosis in leukemia U937 cells: involvement of caspases activation and MAPK-independent pathways. Planta Med., 72(6):501–506. http://dx.doi.org/10.1055/s-2006-931534

    Article  CAS  PubMed  Google Scholar 

  • Long, Y., Lin, X.T., Zeng, K.L., et al., 2004. Efficacy of intramuscular matrine in the treatment of chronic hepatitis B. Hepatobiliary Pancreat. Dis. Int., 3(1):69–72.

    CAS  PubMed  Google Scholar 

  • McGrath, P., Li, C.Q., 2008. Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov. Today, 13(9-10):394–401. http://dx.doi.org/10.1016/j.drudis.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  • Pan, Q.M., Li, Y.H., Hua, J., et al., 2015. Antiviral matrine-type alkaloids from the rhizomes of Sophora tonkinensis. J. Nat. Prod., 78(7):1683–1688. http://dx.doi.org/10.1021/acs.jnatprod.5b00325

    Article  CAS  PubMed  Google Scholar 

  • Qian, H., Zhao, B.T., Chan, B., et al., 2015. Relationship between the content of polysaccharides, flavonoids and polyphenols from the sporocarp of Phellinus linteus and the antioxidant activity. Sci. Technol. Food Ind., 36(12): 104–108 (in Chinese). http://dx.doi.org/10.13386/j.issn1002-0306.2015.12.014

    CAS  Google Scholar 

  • Rekha, R.D., Amali, A.A., Her, G.M., et al., 2008. Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio. Toxicology, 243(1-2):11–22. http://dx.doi.org/10.1016/j.tox.2007.09.007

    Article  CAS  PubMed  Google Scholar 

  • Selderslaghs, I.W.T., Blust, R., Witters, H.E., 2012. Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds. Reprod. Toxicol., 33(2):142–154. http://dx.doi.org/10.1016/j.reprotox.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  • Shen, B., Liu, H.C., Ou, W.B., et al., 2015. Toxicity induced by Basic Violet 14, Direct Red 28 and Acid Red 26 in zebrafish larvae. J. Appl. Toxicol., 35(12):1473–1480. http://dx.doi.org/10.1002/jat.3134

    Article  CAS  PubMed  Google Scholar 

  • Sun, R., Yang, Q., Zhao, Y., 2010. Comparative study on acute toxicity of different components of radix et Rhizome Sophorae Tonkinensis in mice. Chin. J. Pharmacovigil., 7(5):257–262 (in Chinese). http://dx.doi.org/10.3969/j.issn.1672-8629.2010.05.001

    Google Scholar 

  • Tang, L., Dong, L.N., Peng, X.J., et al., 2013. Pharmacokinetic characterization of oxymatrine and matrine in rats after oral administration of radix Sophorae tonkinensis extract and oxymatrine by sensitive and robust UPLC-MS/MS method. J. Pharm. Biomed. Anal., 83:179–185. http://dx.doi.org/10.1016/j.jpba.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  • Wang, S.H., Li, T.F., Ran, B.D., et al., 2004. Analysis on contents of organic acids and volatile components in tabacco leaves of Yunnan Province. Chin. Tob. Sci., 2:35–37 (in Chinese). http://dx.doi.org/10.13496/j.issn.1007-5119.2004.02.010

    Google Scholar 

  • Westerfield, M., 1995. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio). University of Oregon Press, Eugene, OR, USA.

    Google Scholar 

  • Xiao, P., Kubo, H., Komiya, H., et al., 1999. (−)-14β-Acetoxymatrine and (+)-14α-acetoxymatrine, two new matrine-type lupin alkaloids from the leaves of Sophora tonkinensis. Chem. Pharm. Bull. (Tokyo), 47(3):448–450. http://dx.doi.org/10.1248/cpb.47.448

    Article  CAS  Google Scholar 

  • Yang, Q., Zheng, L.N., Xie, Y.Z., et al., 2010. Study on the “dosage-time-toxicity” relationship of hepatotoxicity induced by different components of radix et Rhizoma Sophorae Tonkinensis in mice. Chin. J. Pharmacovigil., 7(7):385–389 (in Chinese). http://dx.doi.org/10.3969/j.issn.1672-8629.2010.07.001

    Google Scholar 

  • Yoo, H., Chae, H.S., Kim, Y.M., et al., 2014. Flavonoids and arylbenzofurans from the rhizomes and roots of Sophora tonkinensis with IL-6 production inhibitory activity. Bioorg. Med. Chem. Lett., 24(24):5644–5647. http://dx.doi.org/10.1016/j.bmcl.2014.10.077

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Willett, C., Fremgen, T., 2003. Zebrafish: an animal model for toxicological studies. Curr. Protoc. Toxicol., 17: 1.7.1-1.7.18. http://dx.doi.org/10.1002/0471140856.tx0107s17

  • Zhang, H.Y., Ding, T.H., 2013. Survey of clinical application and toxic reaction of shandougen. Western J. Tradit. Chin. Med., 26(3):121–124 (in Chinese). http://dx.doi.org/10.3969/j.issn.1004-6852.2013.03.052

    Google Scholar 

  • Zhou, H.J., Ma, H.L., Guo, D.Z., et al., 2015. Physicochemical properties and antioxidant activity of intracellular polysaccharides from Phellinus igniarius precipitated by different ethanol concentrations. Food Sci., 36(19):34–38 (in Chinese). http://dx.doi.org/10.7506/spkx1002-6630-201519006

    CAS  Google Scholar 

  • Zhou, J., Guo, S.Y., Zhang, Y., et al., 2014. Human prokinetic drugs promote gastrointestinal motility in zebrafish. Neurogastroenterol. Motil., 26(4):589–595. http://dx.doi.org/10.1111/nmo.12306

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J.J., Xu, Y.Q., He, J.H., et al., 2014. Human cardiotoxic drugs delivered by soaking and microinjection induce cardiovascular toxicity in zebrafish. J. Appl. Toxicol., 34(2):139–148. http://dx.doi.org/10.1002/jat.2843

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X.Y., Liu, H.C., Guo, S.Y., et al., 2016. A zebrafish thrombosis model for assessing antithrombotic drugs. Zebrafish, 13(4):335–344. http://dx.doi.org/10.1089/zeb.2016.1263

    Article  CAS  PubMed  Google Scholar 

  • Zon, L.I., Peterson, R.T., 2005. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov., 4(1):35–44. http://dx.doi.org/10.1038/nrd1606

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-qi Li or Zhong-ping Deng.

Additional information

Project supported by the National Science and Technology Major Project of China (Nos. 2012ZX09505001-002 and 2015ZX09501004-002-002) and the Zhejiang Provincial Science and Technology Planning Project of China (No. 2014C03009)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Hc., Zhu, Xy., Chen, Jh. et al. Toxicity comparison of different active fractions extracted from radix Sophorae tonkinensis in zebrafish. J. Zhejiang Univ. Sci. B 18, 757–769 (2017). https://doi.org/10.1631/jzus.B1600158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600158

Key words

CLC number

关键词

Navigation