Skip to main content
Log in

Exploring the Phytochemical Diversity and Antioxidant Potential of the Vietnamese Smilax glabra Roxb: Insights from UPLC-QTOF-MS/MS and Zebrafish Model Studies

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Research on natural products is growing due to their potential health benefits and medicinal properties. Despite regional variations in phytochemical composition and bioactivity, Smilax glabra Roxb (SGB) has attracted the interest of researchers. Scientists are particularly interested in the Vietnamese SGB variant, which is influenced by biological and environmental factors. Despite geographical differences in phytochemical makeup and bioactivities, SGB remains a fascinating subject in traditional herbal medicine. Using ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS), the phytochemicals in Vietnamese SGB extracts were investigated. This study revealed a wide range of phytochemical compounds, including flavonoids, terpenoids, glycosides, alkaloids, organic acids, phenolics, and steroids. Furthermore, utilizing zebrafish as a model organism, we discovered that these extracts have the surprising ability to greatly improve the survival rate of zebrafish larvae exposed to oxidative stress caused by arsenite (NaAsO2) and hydrogen peroxide (H2O2). Notably, our discoveries suggest the occurrence of new antioxidative pathways in addition to the kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, expanding the understanding of the antioxidant properties and potential therapeutic uses of these plants. To summarize, our research findings shed light on the phytochemical composition of Vietnamese SGB, revealing its potential as a natural antioxidant and encouraging further exploration of its underlying mechanisms for future innovative antioxidant therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Upon reasonable request, the corresponding author will provide access to the datasets created during and/or used in the current work.

References

  1. Wu, H., Wang, Y., Zhang, B., Li, Y. L., Ren, Z. X., Huang, J. J. ,…, Zhang, X. M. (2022). Smilax glabra Roxb.: A review of its traditional usages, phytochemical constituents, pharmacological properties, and clinical applications. Drug Design, Development and Therapy, 16, 3621–3643. https://doi.org/10.2147/DDDT.S374439

  2. Hua, S., Zhang, Y., Liu, J., Dong, L., Huang, J., Lin, D., & Fu, X. (2018). Ethnomedicine, phytochemistry and pharmacology of Smilax glabra An important traditional. Chinese Medicine, 46(2), 261–297. https://doi.org/10.1142/S0192415X18500143

  3. Nguyen, P. T. M., Ngo, Q. V., Nguyen, M. T. H., Maccarone, A. T., & Pyne, S. G. (2020). α-Glucosidase inhibitory activity of the extracts and major phytochemical components of Smilax glabra Roxb. The Natural Products Journal, 10(1), 26–32. https://doi.org/10.2174/2210315509666190124111435

    Article  CAS  Google Scholar 

  4. Dong, J., Sun, B., Li, A., & Chen, H. (2021). The diversity of Smilax (Smilacaceae) leaves from the Middle Miocene in southeastern China. Geological Journal, 56(2), 744–757. https://doi.org/10.1002/gj.3882

    Article  Google Scholar 

  5. Yang, J., Li, Q.-Q., Yu, N., Yin, G., Wu, Z., Li, R., & Zou, W. (2016). Genetic diversity and structure among natural populations of Sindora glabra in Hainan Island, China as revealed by ISSR markers. Biochemical Systematics and Ecology, 69, 145–151. https://doi.org/10.1016/j.bse.2016.09.005

    Article  CAS  Google Scholar 

  6. Van, T. T. T., Chien, V. Van, Hang, P. T., Cuong, P. Van, & Vuong, N. Q. (2015). Nghiên cứu điều chế chế phẩm chống oxi hóa từ rễ thổ phục linh (Smilax glabra ROXB.) của Việt Nam. Vietnam Journal of Chemistry, 53(1), 134–138. https://doi.org/10.15625/0866-7144.2015-00102

  7. Zhang, H.-M., Li, S.-L., Zhang, H., Wang, Y., Zhao, Z.-L., Chen, S.-L., & Xu, H.-X. (2012). Holistic quality evaluation of commercial white and red ginseng using a UPLC-QTOF-MS/MS-based metabolomics approach. Journal of Pharmaceutical and Biomedical Analysis, 62, 258–273. https://doi.org/10.1016/j.jpba.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  8. Cunha, A. G., Brito, E. S., Moura, C. F. H., Ribeiro, P. R. V., & Miranda, M. R. A. (2017). UPLC–qTOF-MS/MS-based phenolic profile and their biosynthetic enzyme activity used to discriminate between cashew apple (Anacardium occidentale L.) maturation stages. Journal of Chromatography B, 1051, 24–32. https://doi.org/10.1016/j.jchromb.2017.02.022

    Article  CAS  Google Scholar 

  9. Yoon, D., Choi, B. R., Kim, Y. C., Oh, S. M., Kim, H. G., Kim, J. U. ,…, Lee, D. Y. (2019). Comparative analysis of panax ginseng berries from seven cultivars using UPLC-QTOF/MS and nmr-based metabolic profiling. Biomolecules, 9(9). https://doi.org/10.3390/biom9090424

  10. Ebshiana, A. A., Snowden, S. G., Thambisetty, M., Parsons, R., Hye, A., & Legido-Quigley, C (2015) Metabolomic method: UPLC-q-ToF polar and nonpolar metabolites in the healthy rat cerebellum using an in-vial dual extraction. PLoS ONE, 10(4). https://doi.org/10.1371/journal.pone.0122883

  11. Akmal, A., Javaid, A., Hussain, R., Kanwal, A., Zubair, M., & Ashfaq, U. A. (2019). Screening of phytochemicals against Keap1- NRF2 interaction to reactivate NRF2 functioning: Pharmacoinformatics based approach. Pakistan Journal of Pharmaceutical Sciences, 32(6(Supplementary)), 2823–2828. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/32024620

  12. Alzain, A. A., Mukhtar, R. M., Abdelmoniem, N., Shoaib, T. H., Osman, W., Alsulaimany, M. ,…, Ibrahim, S. R. M. (2023). Modulation of NRF2/KEAP1-mediated oxidative stress for cancer treatment by natural products using pharmacophore-based screening, molecular docking, and molecular dynamics studies. Molecules, 28(16), 6003. https://doi.org/10.3390/molecules28166003

  13. Watanabe, A., Muraki, K., Tamaoki, J., & Kobayashi, M. (2022). Soy-derived equol induces antioxidant activity in zebrafish in an Nrf2-independent manner. International Journal of Molecular Sciences, 23(9), 5243. https://doi.org/10.3390/ijms23095243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen, V. T., Nguyen, T. T. T., Phuong Phi, N., Mai Que, D. N., Thu Hien, L., Phuong Hanh, L. L. ,…, Thi Thuy, D. (2022). Keap1/Nrf2-independent antioxidative activity of Phyllanthus amarus extract in zebrafish. Vietnam Journal of Biotechnology, 20(4), 653–661. https://doi.org/10.15625/1811-4989/17475

  15. Alafiatayo, A. A., Lai, K. S., Syahida, A., Mahmood, M., & Shaharuddin, N. A. (2019). Phytochemical evaluation, embryotoxicity, and teratogenic effects of Curcuma longa extract on zebrafish (Danio rerio). Evidence-based Complementary and Alternative Medicine, 2019. https://doi.org/10.1155/2019/3807207

  16. P Chitramuthu, B. (2013). Modeling human disease and development in zebrafish. Human Genetics & Embryology, 03(01). https://doi.org/10.4172/2161-0436.1000e108

  17. Hoo, J. Y., Kumari, Y., Shaikh, M. F., Hue, S. M., & Goh, B. H. (2016). Zebrafish: A versatile animal model for fertility research. BioMed Research International, 2016, 1–20. https://doi.org/10.1155/2016/9732780

    Article  CAS  Google Scholar 

  18. Xu, X., Cheng, X., Lin, Q., Li, S., Jia, Z., Han, T. ,…, Li, X. (2016). Identification of mountain-cultivated ginseng and cultivated ginseng using UPLC/oa-TOF MSE with a multivariate statistical sample-profiling strategy. Journal of Ginseng Research, 40(4), 344–350. https://doi.org/10.1016/j.jgr.2015.11.001

  19. Yuk, J., Patel, D. N., Isaac, G., Smith, K., Wrona, M., Olivos, H. J., & Yu, K. (2016). Chemical profiling of ginseng species and ginseng herbal products using UPLC/QTOF-MS. Journal of the Brazilian Chemical Society, 27(8), 1476–1483. https://doi.org/10.5935/0103-5053.20160189

    Article  CAS  Google Scholar 

  20. Fuse, Y., Nguyen, V. T., & Kobayashi, M. (2016). Nrf2-dependent protection against acute sodium arsenite toxicity in zebrafish. Toxicology and Applied Pharmacology, 305, 136–142. https://doi.org/10.1016/j.taap.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  21. Bian, L., Nguyen, V. T., Tamaoki, J., Endo, Y., Dong, G., Sato, A., & Kobayashi, M. (2023). Genetic hyperactivation of Nrf2 causes larval lethality in Keap1a and Keap1b-double-knockout zebrafish. Redox Biology, 62, 102673. https://doi.org/10.1016/j.redox.2023.102673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Obakan Yerlikaya, P., Arısan, E., Mehdizadehtapeh, L., Uysal Onganer, P., & Çoker Gürkan, A. (2023). The use of plant steroids in viral disease treatments: Current status and future perspectives. European Journal of Biology, 0–0. https://doi.org/10.26650/EurJBiol.2023.1130357

  23. Mukaigasa, K., Tsujita, T., Nguyen, V. T., Li, L., Yagi, H., Fuse, Y. ,…, Kobayashi, M. (2018). Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 115(11), 2758–2763. https://doi.org/10.1073/pnas.1714056115

  24. Kubo, E., Chhunchha, B., Singh, P., Sasaki, H., & Singh, D. P. (2017). Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Scientific Reports, 7(1), 14130. https://doi.org/10.1038/s41598-017-14520-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Houghton, C. A., Fassett, R. G., & Coombes, J. S. (2016). Sulforaphane and other nutrigenomic Nrf2 activators: Can the clinician’s expectation be matched by the reality? Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2016/7857186

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee, J., Son, H. S., Lee, H. I., Lee, G.-R., Jo, Y.-J., Hong, S.-E. ,…, Jeong, W. (2019). Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling. The FASEB Journal, 33(2), 2026–2036. https://doi.org/10.1096/fj.201800866RR

  27. Wang, W., Yuhai, Wang H., Chasuna, & Bagenna. (2019). Astilbin reduces ROS accumulation and VEGF expression through Nrf2 in psoriasis-like skin disease. Biological Research, 52(1), 49. https://doi.org/10.1186/s40659-019-0255-2

  28. Jang, E. (2022). Hyperoside as a potential natural product targeting oxidative stress in liver diseases. Antioxidants, 11(8), 1437. https://doi.org/10.3390/antiox11081437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, S., Xu, Y., Weng, Y., Fan, X., Bai, Y., Zheng, X. ,…, Zhang, F. (2018). Astilbin ameliorates cisplatin-induced nephrotoxicity through reducing oxidative stress and inflammation. Food and Chemical Toxicology, 114, 227–236. https://doi.org/10.1016/j.fct.2018.02.041

  30. Solnier, J., Martin, L., Bhakta, S., & Bucar, F. (2020). Flavonoids as novel efflux pump inhibitors and antimicrobials against both environmental and pathogenic intracellular mycobacterial species. Molecules (Basel, Switzerland), 25(3). https://doi.org/10.3390/MOLECULES25030734

  31. Yang, W.-C., Shen, M.-Y., Jang, Y.-S., Chen, Z.-W., & Chang, C. (2012). Catenarin, an anthraquinone compound, inhibits CXCR4 and CCR5 pathways to protect against type 1 diabetes in NOD mice (721) The Journal of Immunology, 188(1_Supplement), 721, https://doi.org/10.4049/jimmunol.188.Supp.72.1

  32. Li, G.-Q., Zhao, Y.-T., Xu, Q.-P., Tian, H.-Y., Guo, P., & Wu, F. (2019). Isolation and crystal structure of bufotalinin — methanol (1/1), C 25 H 34° 7. Zeitschrift für Kristallographie - New Crystal Structures, 234(5), 911–913. https://doi.org/10.1515/ncrs-2019-0138

    Article  CAS  Google Scholar 

  33. Tian, X., Hou, J., Yang, M., Zhang, M., Sun, W., Guan, S. ,…, Jin, Y. (2023). Characterization of Fritillariae cirrhosae bulbus from multiple sources by potential Q‐marker based on metabolomics and network pharmacology. Rapid Communications in Mass Spectrometry, 37(1). https://doi.org/10.1002/rcm.9403

  34. Mpiana, P. T., Ngbolua, K.-N., Tshibangu, D. S. T., Kilembe, J. T., Gbolo, B. Z., Mwanangombo, D. T. ,…, Tshilanda, D. D. (2020). Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study. Chemical Physics Letters, 754, 137751. https://doi.org/10.1016/j.cplett.2020.137751

  35. Lv, C., Zhao, Y., Zhao, B., Han, L., & Lu, J. (2021). New 23, 27-dihydroxy-oleanane-type triterpenoid saponins from Anemone Raddeana Regel. Natural Product Research, 35(3), 384–391. https://doi.org/10.1080/14786419.2019.1634708

    Article  CAS  PubMed  Google Scholar 

  36. Ye, J., Guan, M., Lu, Y., Zhang, D., Li, C., & Zhou, C. (2019). Arbutin attenuates LPS-induced lung injury via Sirt1/Nrf2/NF-κBp65 pathway. Pulmonary Pharmacology & Therapeutics, 54, 53–59. https://doi.org/10.1016/j.pupt.2018.12.001

    Article  CAS  Google Scholar 

  37. Nalban, N., Sangaraju, R., Alavala, S., Mir, S. M., Jerald, M. K., & Sistla, R. (2020). Arbutin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting TLR-4/NF-κB pathway in mice. Cardiovascular Toxicology, 20(3), 235–248. https://doi.org/10.1007/s12012-019-09548-3

    Article  CAS  PubMed  Google Scholar 

  38. McMurray, R. L., Ball, M. E. E., Linton, M., Pinkerton, L., Kelly, C., Lester, J. ,…, Situ, C. (2022). The effects of Agrimonia pilosa Ledeb, Anemone chinensis Bunge, and Smilax glabra Roxb on broiler performance, nutrient digestibility, and gastrointestinal tract microorganisms. Animals, 12(9). https://doi.org/10.3390/ani12091110

  39. Mishra, P. K., Singh, N., Ahmad, G., Dube, A., & Maurya, R. (2005). Glycolipids and other constituents from Desmodium gangeticum with antileishmanial and immunomodulatory activities. Bioorganic & Medicinal Chemistry Letters, 15(20), 4543–4546. https://doi.org/10.1016/j.bmcl.2005.07.020

    Article  CAS  Google Scholar 

  40. Singla, N., & Kadawla, M. (2018). Discovering the combined in vitro antiinflammatory effects of Smilax glabra standardized rhizome extract and Berberis aristata standardized root extract. International Journal of Medical & Pharmaceutical Sciences, 08(03), 6–9. https://doi.org/10.31782/IJMPS.2018.8301

    Article  Google Scholar 

  41. Chaudhary, A., Jaswal, V. S., Choudhary, S., Sonika, Sharma, A., Beniwal, V. ,…, Sharma, S. (2019). Ferulic acid: A promising therapeutic phytochemical and recent patents advances. Recent Patents on Inflammation & Allergy Drug Discovery, 13(2),115-123 https://doi.org/10.2174/1872213X13666190621125048

  42. Nguyen, V. T., Bian, L., Tamaoki, J., Otsubo, S., Muratani, M., Kawahara, A., & Kobayashi, M. (2020). Generation and characterization of keap1a- and keap1b-knockout zebrafish. Redox Biology, 36, 101667. https://doi.org/10.1016/j.redox.2020.101667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tebay, L. E., Robertson, H., Durant, S. T., Vitale, S. R., Penning, T. M., Dinkova-Kostova, A. T., & Hayes, J. D (2015) Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radical Biology and Medicine, 88(Part B), 108–146. https://doi.org/10.1016/j.freeradbiomed.2015.06.021

  44. Deshmukh, P., Unni, S., Krishnappa, G., & Padmanabhan, B. (2017). The Keap1–Nrf2 pathway: Promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophysical Reviews, 9(1), 41–56. https://doi.org/10.1007/s12551-016-0244-4

    Article  CAS  PubMed  Google Scholar 

  45. Susan, A., Rajendran, K., Sathyasivam, K., & Krishnan, U. M. (2019). An overview of plant-based interventions to ameliorate arsenic toxicity. Biomedicine & Pharmacotherapy, 109, 838–852. https://doi.org/10.1016/j.biopha.2018.10.099

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr. Huynh Vinh Khang for enriching our research with invaluable insights and discussions.

Funding

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 108.06–2020.19 to V.T.N.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were conducted by V.T.N., V.T.M.T., L.L.P.H., N.T.P.T., and N.X.T., with the data analysis being handled by T.H.R., P.T.L., V.T.N., and D.T.T. The study was conceived, and the paper was composed by V.T.N. and V.V.M.T. All the authors have thoroughly reviewed and approved the manuscript.

Corresponding author

Correspondence to Vu Thanh Nguyen.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.T., Thao, V.T.M., Hanh, L.L.P. et al. Exploring the Phytochemical Diversity and Antioxidant Potential of the Vietnamese Smilax glabra Roxb: Insights from UPLC-QTOF-MS/MS and Zebrafish Model Studies. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04930-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04930-6

Keywords

Navigation