Skip to main content
Log in

Influence of heat stress on leaf ultrastructure, photosynthetic performance, and ascorbate peroxidase gene expression of two pear cultivars (Pyrus pyrifolia)

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Plants encounter a variety of stresses in natural environments. One-year-old pot-grown trees of pear (Pyrus pyrifolia Nakai cv. Cuiguan and Wonhwang) were exposed to two heat stress regimes. Under constant short-term heat stress, chloroplasts and mitochondria were visibly damaged. Relative chlorophyll content and maximum photochemical efficiency of photosystem II were significantly decreased, which indicated that the leaf photosynthetic capability declined. Under chronic heat stress, mesophyll cell ultrastructure was not obviously damaged, but leaf photosynthetic capability was still restrained. As chronic heat stress was a simulation of the natural environment in summer, further study of the responses under this stress regime was undertaken. Ascorbate peroxidase (APX) activity was increased in ‘Cuiguan’, but not in ‘Wonhwang’. Inducible expression of PpAPX genes in the cytoplasm, chloroplasts and peroxisomes was consistent with increased APX activity in ‘Cuiguan’, whereas only weak induction of PpAPX genes was observed in ‘Wonhwang’. The isoenzymes cytosolic APX1 (cAPX1) and stromal APX (sAPX) were confirmed to be localized in the cytoplasm and chloroplasts, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apel, K., Hirt, H., 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 55(1):373–399. [doi:10.1146/annurev.arplant.55.031903.141701]

    Article  PubMed  CAS  Google Scholar 

  • Aro, E.M., Suorsa, M., Rokka, A., Allahverdiyeva, Y., Paakkarinen, V., Saleem, A., Battchikova, N., Rintamäki, E., 2005. Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J. Exp. Bot., 56(411):347–356. [doi:10.1093/jxb/eri041]

    Article  PubMed  CAS  Google Scholar 

  • Asada, K., 1992. Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plantarum, 85(2): 235–241. [doi:10.1111/j.1399-3054.1992.tb04728.x]

    Article  CAS  Google Scholar 

  • Asada, K., 1999. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50(1):601–639. [doi:10.1146/annurev.arplant.50.1.601]

    Article  PubMed  CAS  Google Scholar 

  • Asada, K., 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol., 141(2):391–396. [doi:10.1104/pp.106.082040]

    Article  PubMed  CAS  Google Scholar 

  • Bienert, G.P., Møller, A.L.B., Kristiansen, K.A., Schulz, A., Møller, I.M., Schjoerring, J.K., Jahn, T.P., 2007. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem., 282(2):1183–1192. [doi:10.1074/jbc.M603761200]

    Article  PubMed  CAS  Google Scholar 

  • Bohnert, H.J., Nelson, D.E., Jensen, R.G., 1995. Adaptations to environment stresses. Plant Cell, 7(7):1099–1111. [doi:10. 2307/3870060]

    PubMed  CAS  Google Scholar 

  • Chang, C.C.C., Ball, L., Fryer, M.J., Baker, N.R., Karpinski, S., Mullineaux, P.M., 2004. Induction of ascorbate peroxidase 2 expression in wounded Arabidopsis leaves does not involve known wound-signalling pathways but is associated with changes in photosynthesis. Plant J., 38(3):499–511. [doi:10.1111/j.1365-313X.2004.02066.x]

    Article  PubMed  CAS  Google Scholar 

  • Chew, O., Whelan, J., Millar, A.H., 2003. Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J. Biol. Chem., 278(47):46869–46877. [doi:10.1074/jbc.M307525200]

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner, S.J., Salvucci, M.E., 2002. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol., 129(4):1773–1780. [doi:10.1104/pp.002170]

    Article  PubMed  CAS  Google Scholar 

  • Dat, J., Vandenabeele, S., Vranová, E., van Montagu, M., Inzé, D., van Breusegem, F., 2000. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci., 57(5):779–795. [doi:10.1007/s000180050041]

    Article  PubMed  CAS  Google Scholar 

  • Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., Mittler, R., 2005. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell, 17(1):268–281. [doi:10.1105/tpc.104.026971]

    Article  PubMed  CAS  Google Scholar 

  • Foyer, C.H., Lelandais, M., Kunert, K.J., 1994. Photooxidative stress in plants. Physiol. Plantarum, 92(4):696–717. [doi:10.1111/j.1399-3054.1994.tb03042.x]

    Article  CAS  Google Scholar 

  • Fridovich, I., 1998. Oxygen toxicity: a radical explanation. J. Exp. Biol., 201(8):1203–1209.

    PubMed  CAS  Google Scholar 

  • Fryer, M.J., Ball, L., Oxborough, K., Karpinski, S., Mullineaux, P.M., Baker, N.R., 2003. Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J., 33(4):691–705. [doi:10.1046/j.1365-313X.2003.01656.x]

    Article  PubMed  CAS  Google Scholar 

  • Glenn, D.M., Prado, E., Erez, A., Mcferson, J., Puterka, G.J., 2002. A reflective, processed-kaolin particle film affects fruit temperature, radiation reflection, and solar injury in apple. J. Am. Soc. Hortic. Sci., 127(2):188–193.

    Google Scholar 

  • Havaux, M., 1993. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell Environ., 16(4):461–467. [doi:10.1111/j.1365-3040.1993.tb00893.x]

    Article  Google Scholar 

  • Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125(1):189–198. [doi:10.1016/0003-9861(68)90654-1]

    Article  PubMed  CAS  Google Scholar 

  • Huang, X.Z., Chen, Y.T., Lei, Y., Cai, S.H., Chen, X.M., 2010. Causes and control strategies of a large number of early falling leaves of pear in Fujian. Chin. Agric. Sci. Bull., 26(2):91–95 (in Chinese).

    Google Scholar 

  • Ishikawa, T., Shigeoka, S., 2008. Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci. Biotechnol. Biochem., 72(5):1143–1154. [doi:10.1271/bbb.80062]

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, T., Yoshimura, K., Tamoi, M., Takeda, T., Shigeoka, S., 1997. Alternative mRNA splicing of 3′-terminal exons generates ascorbate peroxidase isoenzymes in spinach (Spinacia oleracea) chloroplasts. Biochem. J., 328(Pt 3): 795–800.

    PubMed  CAS  Google Scholar 

  • Ishikawa, T., Yoshimura, K., Sakai, K., Tamoi, M., Takeda, T., Shigeoka, S., 1998. Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach. Plant Cell Physiol., 39(1):23–34. [doi:10.1093/oxfordjournals.pcp.a029285]

    Article  PubMed  CAS  Google Scholar 

  • Ji, W.W., Qiu, C.H., Jiao, Y., Guo, Y.P., Teng, Y.W., 2012. Effects of high temperature and strong light on photosynthesis, D1 protein, and the Deg1 protease in pear (Pyrus pyrifolia) leaves. J. Fruit Sci., 29(5):794–799.

    CAS  Google Scholar 

  • Jimenez, A., Hernandez, J.A., Del Rio, L.A., Sevilla, F., 1997. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol., 114(1):275–284. [doi:10.1104/pp.114.1.275]

    PubMed  CAS  Google Scholar 

  • Karpinski, S., Reynolds, H., Karpinska, B., Wingsle, G., Creissen, G., Mullineaux, P., 1999. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science, 284(5414):654–657. [doi:10.1126/science.284.5414.654]

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.D., Kim, Y.H., Kwon, S.Y., Yun, D.J., Kwak, S.S., Lee, H.S., 2010. Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX and NDPK2 genes. Physiol. Plant., 140(2):153–162. [doi:10.1111/j.1399-3054.2010.01392.x]

    Article  PubMed  CAS  Google Scholar 

  • Kitajima, S., Tomizawa, K.I., Shigeoka, S., Yokota, A., 2006. An inserted loop region of stromal ascorbate peroxidase is involved in its hydrogen peroxide-mediated inactivation. FEBS J., 273(12):2704–2710. [doi:10.1111/j.1742-4658.2006.05286.x]

    Article  PubMed  CAS  Google Scholar 

  • Kratsch, H.A., Wise, R.R., 2000. The ultrastructure of chilling stress. Plant Cell Environ., 23(4):337–350. [doi:10.1046/j.1365-3040.2000.00560.x]

    Article  CAS  Google Scholar 

  • Krause, G., Weis, E., 1984. Chlorophyll fluorescence as a tool in plant physiology. Photosynth. Res., 5(2):139–157. [doi:10.1007/BF00028527]

    Article  CAS  Google Scholar 

  • Law, R.D., Crafts-Brandner, S.J., 1999. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol., 120(1):173–182. [doi:10.1104/pp.120.1.173]

    Article  PubMed  CAS  Google Scholar 

  • Li, P.M., Cheng, L.L., 2009. The elevated anthocyanin level in the shaded peel of ‘anjou’ pear enhances its tolerance to high temperature under high light. Plant Sci., 177(5): 418–426. [doi:10.1016/j.plantsci.2009.07.005]

    Article  CAS  Google Scholar 

  • Liu, G., Li, W., Zheng, P., Xu, T., Chen, L., Liu, D., Hussain, S., Teng, Y., 2012. Transcriptomic analysis of ‘suli’ pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-Seq. BMC Genomics, 13(1):700. [doi:10.1186/1471-2164-13-700]

    Article  PubMed  CAS  Google Scholar 

  • Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4):402–408. [doi:10.1006/meth.2001.1262]

    Article  PubMed  CAS  Google Scholar 

  • Ma, Y.H., Ma, F.W., Zhang, J.K., Li, M.J., Wang, Y.H., Liang, D., 2008. Effects of high temperature on activities and gene expression of enzymes involved in ascorbate-glutathione cycle in apple leaves. Plant Sci., 175(6): 761–766. [doi:10.1016/j.plantsci.2008.07.010]

    Article  CAS  Google Scholar 

  • Martinez, S.E., Huang, D., Szczepaniak, A., Cramer, W.A., Smith, J.L., 1994. Crystal structure of chloroplast cytochrome reveals a novel cytochrome fold and unexpected heme ligation. Structure, 2(2):95–105. [doi:10.1016/S0969-2126(00)00012-5]

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., 2002. Oxidative stress antioxidantandstress tolerance. Trends Plant Sci., 7(9):405–410. [doi:10.1016/S1360-1385(02)02312-9]

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., Zilinskas, B.A., 1992. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J. Biol. Chem., 267(30):21802–21807.

    PubMed  CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., van Breusegem, F., 2004. Reactive oxygen gene network of plants. Trends Plant Sci., 9(10):490–498. [doi:10.1016/j.tplants.2004.08.009]

    Article  PubMed  CAS  Google Scholar 

  • Miyake, C., Asada, K., 1996. Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate; hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol., 37(4):423–430. [doi:10. 1093/oxfordjournals.pcp.a028963]

    Article  CAS  Google Scholar 

  • Mullineaux, P.M., 2006. Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants. Plant Physiol., 141(2):346–350. [doi:10.1104/pp.106.078162]

    Article  PubMed  CAS  Google Scholar 

  • Najami, N., Janda, T., Barriah, W., Kayam, G., Tal, M., Guy, M., Volokita, M., 2008. Ascorbate peroxidase gene family in tomato: its identification and characterization. Mol. Genet. Genomics, 279(2):171–182. [doi:10.1007/s00438-007-0305-2]

    Article  PubMed  CAS  Google Scholar 

  • Nakano, Y., Asada, K., 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22(5):867–880.

    CAS  Google Scholar 

  • Neill, S., Desikan, R., Hancock, J., 2002. Hydrogen peroxide signalling. Curr. Opin. Plant Biol., 5(5):388–395. [doi:10.1016/S1369-5266(02)00282-0]

    Article  PubMed  CAS  Google Scholar 

  • Panchuk, I.I., Volkov, R.A., Schöffl, F., 2002. Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol., 129(2):838–853. [doi:10.1104/pp.001362]

    Article  PubMed  CAS  Google Scholar 

  • Santos, M., Gousseau, H., Lister, C., Foyer, C., Creissen, G., Mullineaux, P., 1996. Cytosolic ascorbate peroxidase from Arabidopsis thaliana L. is encoded by a small multigene family. Planta, 198(1):64–69. [doi:10.1007/BF00197587]

    CAS  Google Scholar 

  • Sato, Y., Murakami, T., Funatsuki, H., Matsuba, S., Saruyama, H., Tanida, M., 2001. Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. J. Exp. Bot., 52(354):145–151. [doi:10.1093/jexbot/52.354.145]

    Article  PubMed  CAS  Google Scholar 

  • Sečenji, M., Hideg, E., Bebes, A., Györgyey, J., 2009. Transcriptional differences in gene families of the ascorbate-glutathione cycle in wheat during mild water deficit. Plant Cell Rep., 29(1):37–50. [doi:10.1007/s00299-009-0796-x]

    Article  PubMed  Google Scholar 

  • Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., Yoshimura, K., 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot., 53(372):1305–1319. [doi:10.1093/jexbot/53.372.1305]

    Article  PubMed  CAS  Google Scholar 

  • Sparkes, I.A., Runions, J., Kearns, A., Hawes, C., 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc., 1(4):2019–2025. [doi:10.1038/nprot.2006.286]

    Article  PubMed  CAS  Google Scholar 

  • Teixeira, F., Menezes-Benavente, L., Margis, R., Margis-Pinheiro, M., 2004. Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. J. Mol. Evol., 59(6):761–770. [doi:10.1007/s00239-004-2666-z]

    Article  PubMed  CAS  Google Scholar 

  • Teixeira, F., Menezes-Benavente, L., Galvão, V., Margis, R., Margis-Pinheiro, M., 2006. Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta, 224(2):300–314. [doi:10.1007/s00425-005-0214-8]

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele, S., van der Kelen, K., Dat, J., Gadjev, I., Boonefaes, T., Morsa, S., Rottiers, P., Slooten, L., van Montagu, M., Zabeau, M., et al., 2003. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. PNAS, 100(26):16113–16118. [doi:10.1073/pnas.2136610100]

    Article  PubMed  CAS  Google Scholar 

  • Vanderauwera, S., Suzuki, N., Miller, G., van de Cotte, B., Morsa, S., Ravanat, J.L., Hegie, A., Triantaphylidès, C., Shulaev, V., van Montagu, M.C.E., et al., 2011. Extranuclear protection of chromosomal DNA from oxidative stress. PNAS, 108(4):1711–1716. [doi:10.1073/pnas.1018359108]

    Article  PubMed  CAS  Google Scholar 

  • Volkov, R., Panchuk, I., Mullineaux, P., Schoffl, F., 2006. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol., 61(4–5):733–746. [doi:10.1007/s11103-006-0045-4]

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Ou, Y., Wu, Z., Dai, L.Z., Liu, S.W., 2011. Effects of high temperature stress on physiological indicators, early defoliation of early-maturing pear. Southwest China J. Agric. Sci., 24(2):546–551 (in Chinese).

    Google Scholar 

  • Yamamoto, Y., Aminaka, R., Yoshioka, M., Khatoon, M., Komayama, K., Takenaka, D., Yamashita, A., Nijo, N., Inagawa, K., Morita, N., et al., 2008. Quality control of photosystem II: impact of light and heat stresses. Photosynth. Res., 98(1–3):589–608. [doi:10.1007/s11120-008-9372-4]

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura, K., Yabuta, Y., Ishikawa, T., Shigeoka, S., 2000. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol., 123(1): 223–234. [doi:10.1104/pp.123.1.223]

    Article  PubMed  CAS  Google Scholar 

  • Yu, B., Zhang, D., Huang, C., Qian, M., Zheng, X., Teng, Y., Su, J., Shu, Q., 2012. Isolation of anthocyanin biosynthetic genes in red Chinese sand pear (Pyrus pyrifolia Nakai) and their expression as affected by organ/tissue, cultivar, bagging and fruit side. Sci. Hort., 136:29–37. [doi:10.1016/j.scienta.2011.12.026]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-wen Teng.

Additional information

Project (No. nycytx-29) supported by the Earmarked Fund for the Modern Agro-industry Technology Research System, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Df., Zhang, D., Liu, Gq. et al. Influence of heat stress on leaf ultrastructure, photosynthetic performance, and ascorbate peroxidase gene expression of two pear cultivars (Pyrus pyrifolia). J. Zhejiang Univ. Sci. B 14, 1070–1083 (2013). https://doi.org/10.1631/jzus.B1300094

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1300094

Key words

CLC number

Navigation