Skip to main content
Log in

Identification and characterization of plasma membrane aquaporins isolated from fiber cells of Calotropis procera

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Calotropis procera, commonly known as “milkweed”, possesses long seed trichomes for seed dispersal and has the ability to survive under harsh conditions such as drought and salinity. Aquaporins are water channel proteins expressed in all land plants, divided into five subfamilies plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like proteins (NIPs), small basic intrinsic proteins (SIPs), and the unfamiliar X intrinsic proteins (XIPs). PIPs constitute the largest group of water channel proteins that are involved in different developmental and regulatory mechanisms including water permeability, cell elongation, and stomata opening. Aquaporins are also involved in abiotic stress tolerance and cell expansion mechanisms, but their role in seed trichomes (fiber cells) has never been investigated. A large number of clones isolated from C. procera fiber cDNA library showed sequence homology to PIPs. Both expressed sequence tags (ESTs) and real-time polymerase chain reaction (PCR) studies revealed that the transcript abundance of this gene family in fiber cells of C. procera is greater than that of cotton. Full-length cDNAs of CpPIP1 and CpPIP2 were isolated from C. procera fiber cDNA library and used for constructing plant expression vectors under constitutive (2×35S) and trichome-specific (GhLTP3) promoters. Transgenic tobacco plants were developed via Agrobacterium-mediated transformation. The phenotypic characteristics of the plants were observed after confirming the integration of transgene in plants. It was observed that CpPIP2 expression cassette under 2×35S and GhLTP3 promoter enhanced the numbers of stem and leave trichomes. However, 2×35S::CpPIP2 has a more amplified effect on trichome density and length than GhLTP3::CpPIP2 and other PIP constructs. These findings imply the role of C. procera PIP aquaporins in fiber cell elongation. The PIPs-derived cell expansion mechanism may be exploited through transgenic approaches for improvement of fiber staple length in cotton and boosting of defense against sucking insects by enhancing plant pubescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agre, P., Sasaki, S., Chrispeels, M., 1993. Aquaporins: a family of water channel proteins. Am. J. Physiol., 261:F461.

    Google Scholar 

  • Aharon, R., Shahak, Y., Wininger, S., Bendov, R., Kapulnik, Y., Galili, G., 2003. Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell, 15(2):439–447. [doi:10.1105/tpc.009225]

    Article  PubMed  CAS  Google Scholar 

  • Azmat, M.A., Khan, I.A., Cheema, H.M.N., Rajwana, I.A., Khan, A.S., Khan, A.A., 2012. Extraction of DNA suitable for PCR applications from mature leaves of Mangifera indica L. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 13(4):239–243. [doi:10.1631/jzus.B1100194]

    Article  CAS  Google Scholar 

  • Beuron, F., Caherec, F.L., Guillam, M.T., Cavalier, A., Garret, A., Tassan, J.P., Delamarche, C., Schultz, P., Mallouh, V., Rolland, J.P., et al., 1995. Structural analysis of a MIP family protein from the digestive tract of Cicadella viridis. J. Biol. Chem., 270(29):17414–17422. [doi:10.1074/jbc.270.29.17414]

    Article  PubMed  CAS  Google Scholar 

  • Bots, M., Vergeldt, F., Wolters-Arts, M., Weterings, K., van As, H., Mariani, C., 2005. Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco. Plant Physiol., 137(3):1049–1056. [doi:10.1104/pp.104.056408]

    Article  PubMed  CAS  Google Scholar 

  • Boyer, J.S., 2001. Growth-induced water potentials originate from wall yielding during growth. J. Exp. Bot., 52(360): 1483–1488. [doi:10.1093/jexbot/52.360.1483]

    Article  PubMed  CAS  Google Scholar 

  • Calamita, G., Bishai, W.R., Preston, G.M., Guggino, W.B., Agre, P., 1995. Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J. Biol. Chem., 270(49):29063–29066. [doi:10.1074/jbc.270.49.29063]

    Article  PubMed  CAS  Google Scholar 

  • Carbrey, J.M., Bonhivers, M., Boeke, J.D., Agre, P., 2001. Aquaporins in Saccharomyces: characterization of a second functional water channel protein. PNAS, 98(3):1000–1005. [doi:10.1073/pnas.98.3.1000]

    Article  PubMed  CAS  Google Scholar 

  • Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M.J., Jung, R., 2001. Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol., 125(3): 1206–1215. [doi:10.1104/pp.125.3.1206]

    Article  PubMed  CAS  Google Scholar 

  • Cheema, H.M.N., Bashir, A., Khatoon, A., Iqbal, N., Zafar, Y., Malilk, K.A., 2010. Molecular characterization and transcriptome profiling of expansin genes isolated from Calotropis procera fibers. Electron. J. Biotechnol., 13(6): 1–14. [doi:10.2225/vol13-issue6-fulltext-7]

    Google Scholar 

  • Choat, B., Gambetta, G.A., Shackel, K.A., Matthews, M.A., 2009. Vascular function in grape berries across development and its relevance to apparent hydraulic isolation. Plant Physiol., 151(3):1677–1687. [doi:10.1104/pp.109.143172]

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove, D.J., 1986. Biophysical control of plant cell growth. Annu. Rev. Plant Physiol., 37(1):377–405. [doi:10.1146/annurev.pp.37.060186.002113]

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove, D.J., 1993. Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol., 124(1):1–23. [doi:10.1111/j.1469-8137.1993.tb03795.x]

    Article  PubMed  CAS  Google Scholar 

  • Danielson, J.A., Johanson, U., 2008. Unexpected complexity of the aquaporins gene family in moss Physcomitrella patens. BMC Plant Biol., 8(1):45. [doi:10.1186/1471-2229-8-45]

    Article  PubMed  Google Scholar 

  • de Groot, B.L., Frigato, T., Helms, V., Grubmuller, H., 2003. The mechanism of proton exclusion in the aquaporin-1 water channel. J. Mol. Biol., 333(2):279–293. [doi:10.1016/j.jmb.2003.08.003]

    Article  PubMed  Google Scholar 

  • Fetter, K., van Wilder, V., Moshelion, M., Chaumont, F., 2004. Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell, 16(1):215–228. [doi:10.1105/tpc.017194]

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson, S., Lebrun, A.S., Norden, K., Chaumont, F., Johanson, U., 2005. A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels. Plant Physiol., 139(1):287–295. [doi:10.1104/pp.105.063198]

    Article  PubMed  CAS  Google Scholar 

  • Hanba, Y.T., Shibasaka, M., Hayashi, Y., Hayakawa, T., Kasamo, K., Terashima, I., Katsuhara, M., 2004. Over expression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol., 45(5):521–529. [doi:10.1093/pcp/pch070]

    Article  PubMed  CAS  Google Scholar 

  • Hukin, D., Doering Saad, C., Thomas, C.R., Pritchard, J., 2002. Sensitivity of cell hydraulic conductivity to mercury is coincident with symplasmic isolation and expression of plasmalemma aquaporin genes in growing maize roots. Planta, 215(6):1047–1056. [doi:10.1007/s00425-002-0841-2]

    Article  PubMed  CAS  Google Scholar 

  • Indrais, E., Cheema, H.M.N., Bashir, A., 2011. Temporal expression analysis and cloning of cotton (Gossypium hirsutum) fiber genes. Int. J. Agric. Biol., 13(1):89–94.

    CAS  Google Scholar 

  • Katsuhara, M., Hanba, Y.T., 2008. Barley plasma membrane intrinsic proteins (PIP aquaporins) as water and CO2 transporters. Eur. J. Physiol., 456(4):687–691. [doi:10.1007/s00424-007-0434-9]

    Article  CAS  Google Scholar 

  • Kozono, D., Ding, X.D., Iwasaki, I., Meng, X.Y., Kamagata, Y., Agre, P., Kitagawa, Y., 2003. Functional expression and characterization of an archaeal aquaporin-AqpM from Methanothermobacter marburgensis. J. Biol. Chem., 278(12):10649–10656. [doi:10.1074/jbc.M212418200]

    Article  PubMed  CAS  Google Scholar 

  • Li, D.D., Wu, Y.J., Ruan, X.M., Li, B., Zhu, L., Wang, H., Li, X.B., 2009. Expressions of three cotton genes encoding the PIP proteins are regulated in root development and in response to stresses. Plant Cell Rep., 28(2):291–300. [doi:10.1007/s00299-008-0626-6]

    Article  PubMed  CAS  Google Scholar 

  • Liu, D.Q., Tu, L.L., Wang, L., Li, Y.J., Zhu, L.F., Zhang, X.L., 2008. Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers. Plant Cell Rep., 27(8):1385–1394. [doi:10.1007/s00299-008-0545-6]

    Article  PubMed  CAS  Google Scholar 

  • Ma, M., Xue, J., Li, Y., Liu, X., Dai, F., Jia, W., Luo, Y., Gao, J., 2008. Rh-PIP2;1, a rose aquaporin gene, is involved in ethylene-regulated petal expansion. Plant Physiol., 148(2):894–907. [doi:10.1104/pp.108.120154]

    Article  PubMed  CAS  Google Scholar 

  • Maurel, C., 2007. Plant aquaporins: novel functions and regulation properties. FEBS Lett., 581(12):2227–2236. [doi:10.1016/j.febslet.2007.03.021]

    Article  PubMed  CAS  Google Scholar 

  • Mitra, B.N., Yoshino, R., Morio, T., Yokoyama, M., Maeda, M., Urushihara, H., Tanaka, Y., 2000. Loss of a member of the aquaporin gene family, aqpA affects spore dormancy in Dictyostelium. Gene, 251(2):131–139. [doi:10.1016/S0378-1119(00)00201-8]

    Article  PubMed  CAS  Google Scholar 

  • Moshelion, M., Becker, D., Biela, A., Hehlein, N., Hedrich, R., Otto, B., Levi, H., Moran, N., Kaldenhoff, R., 2002. Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell, 14(3):727–739. [doi:10.1105/tpc.010351]

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15(3):473–497. [doi:10.1111/j.1399-3054.1962.tb08052.x]

    Article  CAS  Google Scholar 

  • Park, W., Scheffler, B.E., Bauer, F.J., Campbell, B.T., 2010. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol., 10(1):142. [doi:10.1186/1471-2229-10-142]

    Article  PubMed  Google Scholar 

  • Parrotta, J.A., 2001. Healing Plants of Peninsular India. CAB International Wallingford Press, UK and New York, p.944.

    Google Scholar 

  • Preston, G.M., Carroll, T.P., Guggino, W.B., Agre, P., 1992. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 256(5055): 385–387. [doi:10.1126/science.256.5055.385]

    Article  PubMed  CAS  Google Scholar 

  • Sade, N., Gebretsadik, M., Seligmann, R., Schwartz, A., Wallach, R., Moshelion, M., 2010. The role of tobacco aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol., 152(1):245–254. [doi:10.1104/pp.109.145854]

    Article  PubMed  CAS  Google Scholar 

  • Schaffner, A.R., 1998. Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta, 204(2):131–139. [doi:10.1007/s004250050239]

    Article  PubMed  CAS  Google Scholar 

  • Siefritz, F., Tyree, M.T., Lovisolo, C., Schubert, A., Kaldenhoff, R., 2002. PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell, 14(4):869–876. [doi:10.1105/tpc.000901]

    Article  PubMed  CAS  Google Scholar 

  • Siefritz, F., Otto, B., Bienert, G.P., van der Krol, A., Kaldenhoff, R., 2004. The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco. Plant J., 37(2):147–155. [doi:10.1046/j.1365-313X.2003.01947.x]

    Article  PubMed  CAS  Google Scholar 

  • Suga, S., Maeshima, M., 2004. Water channel activity of radish plasma membrane aquaporins heterologously expressed in yeast and their modification by site-directed mutagenesis. Plant Cell Physiol., 45(7):823–830. [doi:10.1093/pcp/pch120]

    Article  PubMed  CAS  Google Scholar 

  • Tornroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U., Karlsson, M., Tajkhorshi, E., Neutze, R., Kjellbom, P., 2006. Structural mechanism of plant aquaporin gating. Nature, 439(7077):688–694. [doi:10.1038/nature04316]

    Article  PubMed  Google Scholar 

  • Volkov, V., Hachez, C., Moshelion, M., Draye, X., Chaumont, F., Fricke, W., 2007. Water permeability differs between growing and non-growing barley leaf tissues. J. Exp. Bot., 58(3):377–390. [doi:10.1093/jxb/erl203]

    Article  PubMed  CAS  Google Scholar 

  • Wallace, I.S., Choi, W.G., Roberts, D.M., 2006. The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim. Biophys. Acta, 1758(8):1165–1175. [doi:10.1016/j.bbamem.2006.03.024]

    Article  PubMed  CAS  Google Scholar 

  • Weig, A., Deswarte, C., Chrispeels, M.J., 1997. The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol., 114(4):1347–1357. [doi:10.1104/pp.114.4.1347]

    Article  PubMed  CAS  Google Scholar 

  • Zardoya, R., 2005. Phylogeny and evolution of the major intrinsic protein family. Biol. Cell, 97(6):397–414. [doi:10.1042/BC20040134]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usman Aslam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslam, U., Khatoon, A., Cheema, H.M.N. et al. Identification and characterization of plasma membrane aquaporins isolated from fiber cells of Calotropis procera . J. Zhejiang Univ. Sci. B 14, 586–595 (2013). https://doi.org/10.1631/jzus.B1200233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200233

Key words

CLC number

Navigation