Skip to main content
Log in

Reduction of methylviologen-mediated oxidative stress tolerance in antisense transgenic tobacco seedlings through restricted expression of StAPX

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Ascorbate peroxidases are directly involved in reactive oxygen species (ROS) scavenging by reducing hydrogen peroxide to water. The tomato thylakoid-bound ascorbate peroxidase gene (StAPX) was introduced into tobacco. RNA gel blot analysis confirmed that StAPX in tomato leaves was induced by methylviologen-mediated oxidative stress. The sense transgenic seedlings exhibited higher tAPX activity than that of the wild type (WT) plants under oxidative stress conditions, while the antisense seedlings exhibited lower tAPX activity. Lower APX activities of antisense transgenic seedlings caused higher malondialdehyde contents and relative electrical conductivity. The sense transgenic seedlings with higher tAPX activity maintained higher chlorophyll content and showed the importance of tAPX in maintaining the optimal chloroplast development under methylviologen stress conditions, whereas the antisense lines maintained lower chlorophyll content than WT seedlings. Results indicated that the over-expression of StAPX enhanced tolerance to methylviologen-mediated oxidative stress in sense transgenic tobacco early seedlings, whereas the suppression of StAPX in antisense transgenic seedlings showed high sensitivity to oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi, H., 1974. Catalases. In: HU, B. (Ed.), Methods of Enzymatic Analysis. Academic Press, New York, p.673–677.

    Chapter  Google Scholar 

  • Amako, K., Chen, G.X., Asada, K., 1994. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant Cell Physiol., 35(3): 497–504.

    CAS  Google Scholar 

  • Asada, K., 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50:601–639. [doi:10.1146/annurev.arplant.50.1.601]

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72:248–254. [doi:10.1016/0003-2697(76)90527-3]

    Article  PubMed  CAS  Google Scholar 

  • Cornic, G., Bukhov, N.G., Wiese, C., Bligny, R., Heber, U., 2000. Flexible coupling between light-dependent electron and vectorial proton transport in illuminated leaves of C3 plants. Role of photosystem I-dependent proton pumping. Planta, 210(3):468–477. [doi:10.1007/PL00008154]

    Article  PubMed  CAS  Google Scholar 

  • Danna, C.H., Bartoli, C.G., Sacco, F., Ingala, L.R., Santa-Maria, G.E., Guiamet, J.J., Ugalde, R.A., 2003. Thylakoid-bound ascorbate peroxisidase mutant exhibits impaired electron transport and photosynthetic activity. Plant Physiol., 132(4):2116–2125. [doi:10.1104/pp.103.021717]

    Article  PubMed  CAS  Google Scholar 

  • Giacomelli, L., Masi, A., Ripoll, D.R., Lee, M.J., van Wijk, K.J., 2007. Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidase shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Mol. Biol., 65(5):627–644. [doi:10.1007/s11103-007-9227-y]

    Article  PubMed  CAS  Google Scholar 

  • Giannopolitis, C.N., Ries, S.K., 1977. Superoxide dismutases. I. Occurrence in higher plants. Plant Physiol., 59(2): 309–314. [doi:10.1104/pp.59.2.309]

    Article  PubMed  CAS  Google Scholar 

  • Hemavathi, Upadhyaya, C.P., Akula, N., Young, K.E., Chun, S.C., Kim, D.H., Park, S.W., 2010. Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol. Lett., 32(2): 321–330. [doi:10.1007/s10529-009-0140-0]

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, T., Shigeoka, S., 2008. Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci. Biotechnol. Biochem., 72(5):1143–1154. [doi:10.1271/bbb.80062]

    Article  PubMed  CAS  Google Scholar 

  • Kampfenkel, K., van Montagu, M., Inzé, D., 1995. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem., 225(1):165–167. [doi:10.1006/abio.1995.1127]

    Article  PubMed  CAS  Google Scholar 

  • Kurepa, J., Smalle, J., van Montagu, M, Inzé, D., 1998. Oxidative stress tolerance and longevity in Arabidopsis: the late flowering mutant gigantea is tolerant to paraquat. Plant J., 14(6):759–764. [doi:10.1046/j.1365-313x.1998.00168.x]

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.P., Kim, S.H., Bang, J.W., Lee, H.S., Kwak, S.S., Kwon, S.Y., 2007. Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep., 26(5):591–598. [doi:10.1007/s00299-006-0253-z]

    Article  PubMed  CAS  Google Scholar 

  • Mano, J., Ohno, C., Domae, Y., Asada, K., 2001. Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochim. Biophys. Acta, 1504(2-3): 275–287. [doi:10.1006/jsre.1998.5402]

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7(9):405–410. [doi:10.1016/S1360-1385(02)02312-9]

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bio assay with tobacco tissue cultures. Physiol. Plant, 15(3):473–497. [doi:10.1111/j.1399-3054.1962.tb08052.x]

    Article  CAS  Google Scholar 

  • Nishiyama, Y., Allakhverdiev, S.I., Murata, N., 2006. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim. Biophys. Acta, 1757(7):742–749. [doi:10.1016/j.bbabio.2006.05.013]

    Article  PubMed  CAS  Google Scholar 

  • Noctor, G., Foyer, C.H., 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49:249–279. [doi:10.1146/annurev.arplant.49.1.249]

    Article  PubMed  CAS  Google Scholar 

  • Sato, Y., Masuta, Y., Saito, K., Murayama, S., Ozawa, K., 2011. Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep., 30(3):399–406. [doi:10.1007/s00299-010-0985-7]

    Article  PubMed  CAS  Google Scholar 

  • Saxena, S.C., Joshi, P.K., Grimm, B., Arora, S., 2011. Alleviation of ultraviolet-C-induced oxidative damage through overexpression of cytosolic ascorbate peroxidase. Biologia, 66(6):1052–1059. [doi:10.2478/s11756-011-0120-4]

    Article  CAS  Google Scholar 

  • Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., Yoshimura, K., 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot., 53(372):1305–1319. [doi:10.1093/jexbot/53.372.1305]

    Article  PubMed  CAS  Google Scholar 

  • Sui, N., Li, M., Zhao, S.J., Li, F., Liang, H., Meng, Q.W., 2008. Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta, 226(5):1097–1108. [doi:10.1007/s00425-007-0554-7]

    Article  Google Scholar 

  • Sun, W.H., Duan, M., Shu, D.F., Yang, S., Meng, Q.W., 2010. Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses. Plant Cell Rep., 29(8): 917–926. [doi:10.1007/s00299-010-0878-9]

    Article  PubMed  CAS  Google Scholar 

  • Yabuta, Y., Motoki, T., Yoshimura, K., Takeda, T., Ishikawa, T., Shigeoka, S., 2002. Thylakoid membrane-bound peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J., 32(6):915–925. [doi:10.1046/j.1365-313X.2002.01476.x]

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura, K., Miyao, K., Gaber, A., Takeda, T., Kanaboshi, H., Miyasaka, H., Shigeoka, S., 2004. Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J., 37(1):21–33. [doi:10.1046/j.1365-313X.2003.01930.x]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-wei Meng.

Additional information

Project supported by the Natural Science Foundation of Jiangsu Province (No. BK2010344), the Opening Foundation of State Key Laboratory of Crop Biology (No. 2011KF11), the Postdoctoral Science Foundation of China (No. 2011M500867), and the National Natural Science Foundation of China (No. 31071338)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Wh., Wang, Y., He, Hg. et al. Reduction of methylviologen-mediated oxidative stress tolerance in antisense transgenic tobacco seedlings through restricted expression of StAPX . J. Zhejiang Univ. Sci. B 14, 578–585 (2013). https://doi.org/10.1631/jzus.B1200190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200190

Key words

CLC number

Navigation