Skip to main content
Log in

An Arabidopsis mutant atcsr-2 exhibits high cadmium stress sensitivity involved in the restriction of H2S emission

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The gene AtCSR encodes peptidyl-prolyl cis/trans isomerases (PPIases) that accelerate energetically unfavorable cis/trans isomerization of the peptide bond preceding proline production. In our studies, we found that AtCSR was associated with cadmium (Cd)-sensitive response in Arabidopsis. Our results show that AtCSR expression was triggered by Cd-stress in wild type Arabidopsis. The expression of some genes responsible for Cd2+ transportation into vacuoles was induced, and the expression of the iron-regulated transporter 1 (IRT1) related to Cd2+ absorption from the environment was not induced in wild type with Cd2+ treatment. The expression of Cd-transportation related genes was not in response to Cd-stress, whereas IRT expression increased dramatically in atcsr-2 with Cd2+ treatment. The expression of glutathione 1 (GSH1) was consistent with GSH being much lower in atcsr-2 in comparison with the wild type with Cd2+ treatment. Additionally, malondialdehyde (MDA), hydrogen peroxide, and Cd2+ contents, and activities of some antioxidative enzymes, differed between the wild type and atcsr-2. Hydrogen sulfide (H2S) has been confirmed as the third gas-transmitter over recent years. The findings revealed that the expression pattern of H2S-releasing related genes and that of Cd-induced chelation and transportation genes matched well in the wild type and atcsr-2, and H2S could regulate the expression of the Cd-induced genes and alleviate Cd-triggered toxicity. Finally, one possible suggestion was given: down-regulation of atcsr-2, depending on H2S gas-transmitter not only weakened Cd2+ chelation, but also reduced Cd2+ transportation into vacuoles, as well as enhancing the Cd2+ assimilation, thus rendering atcsr-2 mutant sensitive to Cd-stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Besson-Bard, A., Gravot, A., Richaud, P., Auroy, P., Duc, C., Gaymard, F., Taconnat, L., Renou, J.P., Pugin, A., Wendehenne, D., 2009. NO contributes to cadmium toxicity in arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol., 149(3):1302–1315. [doi:10.1104/pp.108.133348]

    Article  PubMed  CAS  Google Scholar 

  • Bloem, E., Riemenschneider, A., Volker, J., Papenbrock, J., Schmidt, A., Salac, I., Haneklaus, S., Schnug, E., 2004. Sulphur supply and infection with Pyrenopeziza brassicae influence L-cysteine desulphydrase activity in Brassica napus L. J. Exp. Bot., 55(406):2305–2312. [doi:10.1093/jxb/erh236]

    Article  PubMed  CAS  Google Scholar 

  • Bovet, L., Eggmann, T., Meylan-Bettex, M., Polier, J., Kammer, P., Marin, E., Feller, U., Martinoia, E., 2003. Transcript levels of AtMRPs after cadmium treatment: induction of AtMRP3. Plant Cell Environ., 26(3):371–381. [doi:10.1046/j.1365-3040.2003.00968.x]

    Article  CAS  Google Scholar 

  • Byczkowski, J.Z., Sorenson, J.R., 1984. Effects of metal compounds on mitochondrial function: a review. Sci. Total Environ., 37(2–3):133–162. [doi:10.1016/0048-9697(84)90091-3]

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Maehly, A.C., 1955. Assay of catalase and peroxidases. Methods Enzymol., 1(2):764–775. [doi:10.1016/S0076-6879(55)02300-8]

    Article  Google Scholar 

  • Cherkasov, A.A., Overton, R.A.Jr., Sokolov, E.P., Sokolova, I.M., 2007. Temperature-dependent effects of cadmium and purine nucleotides on mitochondrial aconitase from a marine ectotherm, Crassostrea virginica: a role of temperature in oxidative stress and allosteric enzyme regulation. J. Exp. Biol., 210(1):46–55. [doi:10.1242/jeb.02589]

    Article  PubMed  CAS  Google Scholar 

  • Cho, U., Seo, N., 2005. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci., 168(1):113–120. [doi:10.1016/j.plantsci.2004.07.021]

    Article  CAS  Google Scholar 

  • Clemens, S., 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212(4):475–486. [doi:10.1007/s004250000458]

    Article  PubMed  CAS  Google Scholar 

  • Cobbett, C.S., 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol., 123(3):825–832. [doi:10.1104/pp.123.3.825]

    Article  PubMed  CAS  Google Scholar 

  • Connolly, E.L., Fett, J.P., Guerinot, M.L., 2002. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell, 14(6):1347–1357. [doi:10.1105/tpc.001263]

    Article  PubMed  CAS  Google Scholar 

  • Dorta, D.J., Leite, S., Demarco, K.C., Prado, I.M., Rodrigues, T., Mingatto, F.E., Uyemura, S.A., Santos, A.C., Curti, C., 2003. A proposed sequence of events for cadmium-induced mitochondrial impairment. J. Inorg. Biochem., 97(3):251–257. [doi:10.1016/S0162-0134(03)00314-3]

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves, J.F., Tabaldi, L.A., Cargnelutti, D., Pereira, L.B., Maldaner, J., Becker, A.G., Rossato, L.V., Rauber, R., Bagatini, M.D., Bisognin, D.A., et al., 2009. Cadmium-induced oxidative stress in two potato cultivars. Biometals, 22(5):779–792. [doi:10.1007/s10534-009-9225-4]

    Article  PubMed  Google Scholar 

  • Guo, J.B., Dai, X., Xu, W.Z., Ma, M., 2008. Over-expressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere, 72(7):1020–1026. [doi:10.1016/j.chemosphere.2008.04.018]

    Article  PubMed  CAS  Google Scholar 

  • Gupta, A.S., Webb, R.P., Holaday, A.S., Allen, R.D., 1993. Over-expression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-over-expressing plants). Plant Physiol., 103(4):1067–1073. [doi:10.1104/pp.103.4.1067]

    PubMed  Google Scholar 

  • Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplast: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125(1):189–198. [doi:10.1016/0003-9861(68)90654-1]

    Article  PubMed  CAS  Google Scholar 

  • Hunter, T., 1998. Prolyl isomerases and nuclear function. Cell, 92(2):141–143. [doi:10.1016/S0092-8674(00)80906-X]

    Article  PubMed  CAS  Google Scholar 

  • Jimenez, A., Hernandez, J.A., Del Rio, L.A., Sevilla, F., 1997. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol., 114(1):275–284. [doi:10.1104/pp.114.1.275]

    PubMed  CAS  Google Scholar 

  • Jin, Z., Shen, J., Qiao, Z., Yang, G., Wang, R., Pei, Y., 2011. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem. Biophys. Res. Commun., 414(3):481–486. [doi:10.1016/j.bbrc.2011.09.090]

    Article  PubMed  CAS  Google Scholar 

  • Kiefhaber, T., Quaas, R., Hahn, U., Schmid, F.X., 1990. Folding of ribonuclease T1.2. Kinetic models for the folding and unfolding reactions. Biochemistry, 29(12): 3061–3070. [doi:10.1021/bi00464a024]

    Article  PubMed  CAS  Google Scholar 

  • Koren’kov, V., Park, S., Cheng, N.H., Sreevidya, C., Lachmansingh, J., Morris, J., Hirschi, K., Wagner, G.J., 2007. Enhanced Cd2+-selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers. Planta, 225(2):403–411. [doi:10.1007/s00425-006-0352-7]

    Article  PubMed  Google Scholar 

  • Li, Z.S., Lu, Y.P., Zhen, R.G., Szczypka, M., Thiele, D.J., Rea, P.A., 1997. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium. PNAS, 94(1):42–47. [doi:10.1073/pnas.94.1.42]

    Article  PubMed  CAS  Google Scholar 

  • Lu, K.P., Finn, G., Lee, T.H., Nicholson, L.K., 2007. Prolyl cis-trans isomerization as a molecular timer. Nat. Chem. Biol., 3(10):619–629. [doi:10.1038/nchembio.2007.35]

    Article  PubMed  CAS  Google Scholar 

  • Marie, V., Gonzalez, P., Baudrimont, M., Boutet, I., Moraga, D., Bourdineaud, J.P., Boudou, A., 2006. Metallothionein gene expression and protein levels in triploid and diploid oysters Crassostrea gigas after exposure to cadmium and zinc. Environ. Toxicol. Chem., 25(2):412–418. [doi:10.1897/05-114R.1]

    Article  PubMed  CAS  Google Scholar 

  • Rea, P.A., Vatamaniuk, O.K., Rigden, D.J., 2004. Weeds, worms, and more: papain’s long-lost cousin, phytochelatin synthase. Plant Physiol., 136(1):2463–2474. [doi:10.1104/pp.104.048579]

    Article  PubMed  CAS  Google Scholar 

  • Riemenschneider, A., Wegele, R., Schmidt, A., Papenbrock, J., 2005. Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J., 272(5):1291–1304. [doi:10.1111/j.1742-4658.2005.04567.x]

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas, M.C., Rodriguez-Serrano, M., Corpas, F.J., Gómez, M., del Río, L.A., Sandalio, L.M., 2004. Cadmium-induced subcellular accumulation of O2 . and H2O2 in pea leaves. Plant Cell Environ., 27(9):1122–1134. [doi:10.1111/j.1365-3040.2004.01217.x]

    Article  CAS  Google Scholar 

  • Ruegsegger, A., Schmutz, D., Brunold, C., 1990. Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol., 93(4):1579–1584. [doi:10.1104/pp.93.4.1579]

    Article  PubMed  CAS  Google Scholar 

  • Salt, D.E., Prince, R.C., Pickering, I.J., Raskin, I., 1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol., 109(4):1427–1433. [doi:10.1104/pp.109.4.1427]

    PubMed  CAS  Google Scholar 

  • Sandalio, L.M., Dalurzo, H.C., Gómez, M., Romero-Puertas, M.C., del Río, L.A., 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot., 52(364):2115–2126. [doi:10.1093/jexbot/52.364.2115]

    PubMed  CAS  Google Scholar 

  • Sanità di Toppi, L., Gabbrielli, R., 1999. Response to cadmium in higher plants. Environ. Exp. Bot., 41(2):105–130. [doi:10.1016/S0098-8472(98)00058-6]

    Article  Google Scholar 

  • Sanni, B., Williams, K., Sokolov, E.P., Sokolova, I.M., 2008. Effects of acclimation temperature and cadmium exposure on mitochondrial aconitase and LON protease from a model marine ectotherm. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 147(1):101–112. [doi:10.1016/j.cbpc.2007.08.005]

    Article  PubMed  Google Scholar 

  • Sokolova, I.M., 2004. Cadmium effects on mitochondrial function are enhanced by elevated temperatures in a marine poikilotherm, Crassostrea virginica Gmelin (Bivalvia: Ostreidae). J. Exp. Biol., 207(15):2639–2648. [doi:10.1242/jeb.01054]

    Article  PubMed  CAS  Google Scholar 

  • Steffens, J.C., 1990. The heavy-metal binding peptides of plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 41(1):553–575. [doi:10.1146/annurev.pp.41.060190.003005]

    Article  CAS  Google Scholar 

  • Thangavel, P., Long, S., Minocha, R., 2007. Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tiss. Org. Cult., 88(2):201–216. [doi:10.1007/s11240-006-9192-1]

    Article  CAS  Google Scholar 

  • Thordal-Christensen, H., Zhang, Z., Wei, Y., Collinge, D.B., 1997. Subcellular localization of H2O2 in plants, H2O2 accumulation in papillae and hypersensitive response during barley-powdery mildew interaction. Plant J., 11(6):1187–1194. [doi:10.1046/j.1365-313X.1997.11061187.x]

    Article  CAS  Google Scholar 

  • Valko, M., Morris, H., Cronin, M.T.D., 2005. Metals, toxicity and oxidative stress. Curr. Med. Chem., 12(10): 1161–1208. [doi:10.2174/0929867053764635]

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Qian, Y., Hu, H., Xu, Y., Zhang, H., 2011. Comparative proteomic analysis of Cd-responsive proteins in wheat roots. Acta Physiol. Plant, 33(2):349–357. [doi:10.1007/s11738-010-0554-2]

    Article  CAS  Google Scholar 

  • Yadav, S.K., 2010. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr. J. Bot., 76(2):167–179. [doi:10.1016/j.sajb.2009.10.007]

    Article  CAS  Google Scholar 

  • Zientara, K., Wawrzyńska, A., Lukomska, J., López-Moya, J.R., Liszewska, F., Assunção, A.G., Aarts, M.G., Sirko, A., 2009. Activity of the AtMRP3 promoter in transgenic Arabidopsis thaliana and Nicotiana tabacum plants is increased by cadmium, nickel, arsenic, cobalt and lead but not by zinc and iron. J. Biotechnol., 139(3):258–263. [doi:10.1016/j.jbiotec.2008.12.001]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-xi Pei.

Additional information

Project supported by the Research Fund for the Doctoral Program of Higher Education of China (No. 20091401110004), the Science and Technology Special Project of Shanxi Province, China (2012, to Qiang ZHANG), and the Shanxi Scholarship Council of China (No. 2011-007)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Yw., Gong, Zh., Mu, Y. et al. An Arabidopsis mutant atcsr-2 exhibits high cadmium stress sensitivity involved in the restriction of H2S emission. J. Zhejiang Univ. Sci. B 13, 1006–1014 (2012). https://doi.org/10.1631/jzus.B1200089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200089

Key words

CLC number

Navigation