Skip to main content
Log in

Negative regulation of cadmium tolerance in Arabidopsis by MMDH2

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

MMDH2 gene negatively regulates Cd tolerance by modulating reactive oxygen species (ROS) levels and the ROS-mediated signaling, thus, affecting the expression of PDR8.

Abstract

The molecular mechanism by which plants respond to stress caused by cadmium (Cd), one of the most toxic heavy metals to plants, is not well understood. Here, we show that MMDH2, a gene encoding mitochondrial malate dehydrogenase, is involved in Cd stress tolerance in Arabidopsis. The expression of MMDH2 was repressed by Cd stress. The mmdh2 knockdown mutants showed enhanced Cd tolerance, while the MMDH2-overexpressing lines were sensitive to Cd. Under normal and Cd stress conditions, lower H2O2 levels were detected in mmdh2 mutant plants than in wild-type plants. In contrast, higher H2O2 levels were found in MMDH2-overexpressing lines, and they were negatively correlated with malondialdehyde levels. In addition, the expression of the PDR8, a gene encoding a Cd efflux pump, increased and decreased in the mmdh2 mutant and MMDH2-overexpressing lines, in association with lower and higher Cd concentrations, respectively. These results suggest that the MMDH2 gene negatively regulates Cd tolerance by modulating reactive oxygen species (ROS) levels and the ROS-mediated signaling, thus, affecting the expression of PDR8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamska A, Falasca M (2018) ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: what is the way forward? World J Gastroenterol 24:3222–3238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alloway BJ (2013) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer, New York

    Google Scholar 

  • Baker JR, Satarug S, Edwards RJ, Moore MR, Williams DJ, Reilly PEB (2003) Potential for early involvement of CYP isoforms in aspects of human cadmium toxicity. Toxicol Lett 137:85–93

    CAS  PubMed  Google Scholar 

  • Brunetti P, Zanella L, Proia A, De Paolis A, Falasca G, Altamura MM, Sanita di Toppi L, Costantino P, Cardarelli M (2011) Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1. J Exp Bot 62:5509–5519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cazale AC, Clemens S (2001) Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS Lett 507:215–219

    CAS  PubMed  Google Scholar 

  • Chen WR, Feng Y, Chao YE (2008) Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russ J Plant Physiol 55:400–409

    CAS  Google Scholar 

  • Chen Z, Sun L, Liu P, Liu G, Tian J, Liao H (2015) Malate synthesis and secretion mediated by a manganese-enhanced malate dehydrogenase confers superior manganese tolerance in Stylosanthes guianensis. Plant Physiol 167:176–188

    CAS  PubMed  Google Scholar 

  • Cho U-H, Seo N-H (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120

    CAS  Google Scholar 

  • Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    CAS  PubMed  Google Scholar 

  • Connolly EL, Fett JP, Mary Lou G (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cousins AB, Pracharoenwattana I, Zhou W, Smith SM, Badger MR (2008) Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release. Plant Physiol 148:786–795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dias MC, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2013) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35:1281–1289

    CAS  Google Scholar 

  • Ding Y, Ma QH (2004) Characterization of a cytosolic malate dehydrogenase cDNA which encodes an isozyme toward oxaloacetate reduction in wheat. Biochimie 86:509–518

    CAS  PubMed  Google Scholar 

  • Dong J, Mao WH, Zhang GP, Wu FB, Cai Y (2007) Root excretion and plant tolerance to cadmium toxicity—a review. Plant Soil Environ 53:193–200

    CAS  Google Scholar 

  • Donghwan S, Jae-Ung H, Joohyun L, Sichul L, Yunjung C, Gynheung A, Enrico M, Youngsook L (2009) Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21:4031–4043

    Google Scholar 

  • Do-Young K, Lucien B, Masayoshi M, Enrico M, Youngsook L (2010) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    Google Scholar 

  • Fan T, Yang L, Wu X, Ni J, Jiang H, Zhang Q, Fang L, Sheng Y, Ren Y, Cao S (2016) The PSE1 gene modulates lead tolerance in Arabidopsis. J Exp Bot 67:4685–4695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    CAS  PubMed  Google Scholar 

  • Gietl C (1992a) Partitioning of malate dehydrogenase isoenzymes into glyoxysomes, mitochondria, and chloroplasts. Plant Physiol 100:557–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gietl C (1992b) Malate dehydrogenase isoenzymes: cellular locations and role in the flow of metabolites between the cytoplasm and cell organelles. Biochim Biophys Acta 1100:217–234

    CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    CAS  Google Scholar 

  • Hodges DM, Delong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    CAS  Google Scholar 

  • Journet EP, Neuburger M, Douce R (1981) Role of glutamate-oxaloacetate transaminase and malate dehydrogenase in the regeneration of NAD for glycine oxidation by spinach leaf mitochondria. Plant Physiol 67:467–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    CAS  PubMed  Google Scholar 

  • Kuhnlenz T, Schmidt H, Uraguchi S, Clemens S (2014) Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil. J Exp Bot 65:4241–4253

    PubMed  PubMed Central  Google Scholar 

  • Lanphear BP (1998) Environmental health: the paradox of lead poisoning prevention. Science 281:1617–1618

    CAS  PubMed  Google Scholar 

  • Lefevre F, Boutry M (2018) Towards identification of the substrates of ATP-binding cassette transporters. Plant Physiol 178:18–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Zhou W, Dai H, Cao F, Zhang G, Wu F (2012) Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J Hazard Mater 235–236:343–351

    Google Scholar 

  • Liang Zhu Y, Pilon-Smits EA, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YF, Aarts MG (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    CAS  PubMed  Google Scholar 

  • Lopez-Fernandez LA (2018) ATP-binding cassette transporters in the clinical implementation of pharmacogenetics. J Pers Med 8(4):40

    PubMed Central  Google Scholar 

  • Lucas JB (1982) Controlling cadmium in the human food chain: a review and rationale based on health effects. Environ Res 28:251–302

    PubMed  Google Scholar 

  • Luo L, He Y, Zhao Y, Xu Q, Wu J, Ma H, Guo H, Bai L, Zuo J, Zhou JM, Yu H, Li J (2019) Regulation of mitochondrial NAD pool via NAD(+) transporter 2 is essential for matrix NADH homeostasis and ROS production in Arabidopsis. Sci China Life Sci 62:991–1002

    CAS  PubMed  Google Scholar 

  • Miller SS, Driscoll BT, Gregerson RG, Gantt JS, Vance CP (1998) Alfalfa malate dehydrogenase (MDH): molecular cloning and characterization of five different forms reveals a unique nodule-enhanced MDH. Plant J 15:173–184

    CAS  Google Scholar 

  • Pai P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol 148:455–466

    Google Scholar 

  • Pracharoenwattana I, Cornah JE, Smith SM (2007) Arabidopsis peroxisomal malate dehydrogenase functions in beta-oxidation but not in the glyoxylate cycle. Plant J 50:381–390

    CAS  PubMed  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    CAS  PubMed  Google Scholar 

  • Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375

    CAS  PubMed  Google Scholar 

  • Ren Y, Miao M, Meng Y, Cao J, Fan T, Yue J, Xiao F, Liu Y, Cao S (2018) DFR1-mediated inhibition of proline degradation pathway regulates drought and freezing tolerance in Arabidopsis. Cell Rep 23:3960–3974

    CAS  PubMed  Google Scholar 

  • Ross SM (1994) Toxic metals in soil–plant systems. J Ecol 83:739

    Google Scholar 

  • Ruifrok AC, Johnston DA (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23:291–299

    CAS  PubMed  Google Scholar 

  • Selinski J, Konig N, Wellmeyer B, Hanke GT, Linke V, Neuhaus HE, Scheibe R (2014) The plastid-localized NAD-dependent malate dehydrogenase is crucial for energy homeostasis in developing Arabidopsis thaliana seeds. Mol Plant 7:170–186

    CAS  PubMed  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2008) Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ J Plant Physiol 55:1–22

    CAS  Google Scholar 

  • Sew YS, Stroher E, Fenske R, Millar AH (2016) Loss of mitochondrial malate dehydrogenase activity alters seed metabolism impairing seed maturation and post-germination growth in Arabidopsis. Plant Physiol 171:849–863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng Y, Yan X, Huang Y, Han Y, Zhang C, Ren Y, Fan T, Xiao F, Liu Y, Cao S (2019) The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis. Plant Cell Environ 42:891–903

    CAS  PubMed  Google Scholar 

  • Skórzyńska-Polit E, Drążkiewicz M, Krupa Z (2010) Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. Acta Physiol Plant 32:169–175

    Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    CAS  PubMed  Google Scholar 

  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thapa G, Sadhukhan A, Panda SK, Sahoo L (2012) Molecular mechanistic model of plant heavy metal tolerance. Biometals 25:489–505

    CAS  PubMed  Google Scholar 

  • Tomaz T, Bagard M, Pracharoenwattana I, Linden P, Lee CP, Carroll AJ, Stroher E, Smith SM, Gardestrom P, Millar AH (2010) Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis. Plant Physiol 154:1143–1157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomohito A, Akira K, Koji B, Shinsuke M, Shingo M (2009) Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol 43:9361–9367

    Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    CAS  PubMed  Google Scholar 

  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EJ, Yazaki K, Theodoulou FL (2008) Plant ABC proteins—a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    CAS  PubMed  Google Scholar 

  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr 10:266–290

    Google Scholar 

  • Yang L, Fan T, Guan L, Ren Y, Han Y, Liu Q, Liu Y, Cao S (2016a) CMDH4 encodes a protein that is required for lead tolerance in Arabidopsis. Plant Soil 412:317–330

    Google Scholar 

  • Yang Y, Jie X, Chen R, Fu G, Chen T, Tao L (2016b) Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Environ Exp Bot 122:141–149

    CAS  Google Scholar 

  • Yazaki K, Shitan N, Sugiyama A, Takanashi K (2009) Cell and molecular biology of ATP-binding cassette proteins in plants. Int Rev Cell Mol Biol 276:263–299

    PubMed  Google Scholar 

  • Zhang P, Wang R, Ju Q, Li W, Tran LS, Xu J (2019) The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation. Plant Physiol 180(1):529–542

    CAS  PubMed  Google Scholar 

  • Zhao Y, Luo L, Xu J, Xin P, Guo H, Wu J, Bai L, Wang G, Chu J, Zuo J, Yu H, Huang X, Li J (2018) Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Res 28:448–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169–1178

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Wenjia Ma, Yun Meng, Xue Fang, Yuanyuan Wang, and Jiena Xu for their technical assistance.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Numbers 31770284, 31571250, and 31872803).

Author information

Authors and Affiliations

Authors

Contributions

SC conceived the original research plans; XW, YH, XZ, WW and AS performed the experiments; SC, XW, and TF and YS designed the experiments and analysed the data; XW and SC wrote the article with contributions of all the authors.

Corresponding author

Correspondence to Shuqing Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Han, Y., Zhu, X. et al. Negative regulation of cadmium tolerance in Arabidopsis by MMDH2. Plant Mol Biol 101, 507–516 (2019). https://doi.org/10.1007/s11103-019-00923-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00923-w

Keywords

Navigation