Skip to main content
Log in

Biotransformation of nitro-polycyclic aromatic compounds by vegetable and fruit cell extracts

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Extracts from various vegetables and fruits were investigated for their abilities to reduce nitro-polycyclic aromatic hydrocarbons (NPAHs). The extracts from grape and onion exhibited an interesting selectivity, yielding corresponding hydroxylamines or amines as major products under mild conditions of 30 °C and pH 7.0. Grape extracts reduced the 4-nitro-1,8-naphthalic anhydride with the highest conversion rate (>99%) and the highest ratio of hydroxylamine to amine (95:5). In contrast, the onion extracts reduced 4-nitro-1,8-naphthalic anhydride with a conversion rate of 94% and a ratio of hydroxylamine to amine of 8:92. The thiol-reducing agent, β-mercaptoethanol, and metal cations, Ca2+ and Mg2+, greatly increased the reductive efficiency. This work provides an alternative strategy for biotransformation of nitro-polycyclic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abhilash, P.C., Jamil, S., Singh, N., 2009. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol. Adv., 27(4):474–488. [doi:10.1016/j.biotechadv.2009.04.002]

    Article  PubMed  CAS  Google Scholar 

  • Castelli, F., Micieli, D., Ottimo, S., Minniti, Z., Sarpietro, M.G., Librando, V., 2008. Absorption of nitro-polycyclic aromatic hydrocarbons by biomembrane models: effect of the medium lipophilicity. Chemosphere, 73(7):1108–1114. [doi:10.1016/j.chemosphere.2008.07.023]

    Article  PubMed  CAS  Google Scholar 

  • Dai, R., Chen, J., Lin, J., Xiao, S., Chen, S., Deng, Y., 2009. Reduction of nitro phenols using nitroreductase from E. coli in the presence of NADH. J. Hazard. Mater., 170(1):141–143. [doi:10.1016/j.jhazmat.2009.04.122]

    Article  PubMed  CAS  Google Scholar 

  • Doran, P.M., 2009. Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol. Bioeng., 103(1):60–76. [doi:10.1002/bit.22280]

    Article  PubMed  CAS  Google Scholar 

  • Dua, M., Singh, A., Sethunathan, N., Johri, A.K., 2002. Biotechnology and bioremediation: successes and limitations. Appl. Microbiol. Biotechnol., 59(2-3):143–152. [doi:10.1007/s00253-002-1024-6]

    Article  PubMed  CAS  Google Scholar 

  • Hallas, L.E., Alexander, M., 1983. Microbial transformation of nitroaromatic compounds in sewage effluent. Appl. Environ. Microbiol., 45(4):1234–1241.

    PubMed  CAS  Google Scholar 

  • Haritash, A.K., Kaushik, C.P., 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J. Hazard. Mater., 169(1-3):1–15. [doi:10.1016/j.jhazmat.2009.03.137]

    Article  PubMed  CAS  Google Scholar 

  • Laine, D.F., Cheng, I.F., 2007. The destruction of organic pollutants under mild reaction conditions: a review. Microchem. J., 85(2):183–193. [doi:10.1016/j.microc.2006.07.002]

    Article  CAS  Google Scholar 

  • Lewis, N.A., Ray, A.M., 1984. The effect of anions on redox reactions. Inorg. Chem., 23(22):3649–3653. [doi:10.1021/ic00190a044]

    Article  Google Scholar 

  • Macek, T., Mackova, M., Kas, J., 2000. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv., 18(1):23–34. [doi:10.1016/S0734-9750(99)00034-8]

    Article  PubMed  CAS  Google Scholar 

  • Marvin-Sikkema, F.D., de Bont, J.A., 1994. Degradation of nitroaromatic compounds by microorganisms. Appl. Microbiol. Biotechnol., 42(4):499–507. [doi:10.1007/BF00173912]

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, T., Yamanaka, R., Nakamura, K., 2009. Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron: Asymmetry, 20(5):513–557. [doi:10.1016/j.tetasy.2008.12.035]

    Article  CAS  Google Scholar 

  • Medina, V.F., Larson, S.L., Agwaramgbo, L., Perez, W., Escalon, L., 2004. Treatment of trinitrotoluene by crude plant extracts. Chemosphere, 55(5):725–732. [doi:10.1016/j.chemosphere.2003.12.014]

    Article  PubMed  CAS  Google Scholar 

  • Muck, A., Kubát, P., Oliveira, A., Ferreira, L.F.V., Cvacka, J., Civis, S., Zelinger, Z., Barek, J., Zima, J., 2002. Photodegradation of 1-nitropyrene in solution and in the adsorbed state. J. Hazard. Mater., 95(1–2):175–184. [doi:10.1016/S0304-3894(02)00120-6]

    Article  PubMed  CAS  Google Scholar 

  • Parrish, Z.D., Banks, M.K., Schwab, A.P., 2004. Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int. J. Phytorem., 6(2):119–137. [doi:10.1080/16226510490454803]

    Article  CAS  Google Scholar 

  • Ramos, J.L., González-Pérez, M.M., Caballero, A., van Dillewijn, P., 2005. Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr. Opin. Biotechnol., 16(3):275–281. [doi:10.1016/j.copbio.2005.03.010]

    Article  PubMed  CAS  Google Scholar 

  • Roldán, M.D., Pérez-Reinado, E., Castillo, F., Moreno-Vivián, C., 2008. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol. Rev., 32(3): 474–500. [doi:10.1111/j.1574-6976.2008.00107.x]

    Article  PubMed  Google Scholar 

  • Schackmann, A., Muller, R., 1991. Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions. Appl. Microbiol. Biotechnol., 34(6): 809–813. [doi:10.1007/BF00169355]

    Article  CAS  Google Scholar 

  • Shen, J., Zhang, J., Zuo, Y., Wang, L., Sun, X., Li, J., Han, W., He, R., 2009. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. J. Hazard. Mater., 163(2–3):1199–1206. [doi:10.1016/j.jhazmat.2008.07.086]

    Article  PubMed  CAS  Google Scholar 

  • Spain, J.C., 1995. Biodegradation of nitroaromatic compounds. Annu. Rev. Microbiol., 49(1):523–555. [doi:10.1146/annurev.mi.49.100195.002515]

    Article  PubMed  CAS  Google Scholar 

  • Teramoto, H., Tanaka, H., Wariishi, H., 2004. Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol., 66(3):312–317. [doi:10.1007/s00253-004-1637-z]

    Article  PubMed  CAS  Google Scholar 

  • Tocher, J.H., 1997. Reductive activation of nitroheterocyclic compounds. Gen. Pharmacol., 28(4):485–487. [doi:10.1016/S0306-3623(96)00283-2]

    Article  PubMed  CAS  Google Scholar 

  • van Aken, B., 2009. Transgenic plants for enhanced phytoremediation of toxic explosives. Curr. Opin. Biotechnol., 20(2):231–236. [doi:10.1016/j.copbio.2009.01.011]

    Article  PubMed  Google Scholar 

  • Wu, Y., Luo, Y., Zou, D., Ni, J., Liu, W., Teng, Y., Li, Z., 2008. Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: degradation and microbial community analysis. Biodegradation, 19(2):247–257. [doi:10.1007/s10532-007-9131-9]

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J.M., Aken, B.V., Schnoor, J.L., 2006. Leaching of contaminated leaves following uptake and phytoremediation of RDX, HMX, and TNT by poplar. Int. J. Phytorem., 8(1):81–94. [doi:10.1080/15226510500507128]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yang or Qing Yang.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2010CB126102), the National Natural Science Foundation of China (No. 31070715), the National High-Tech R&D Program (863) of China (No. 2011AA10A204), the National Key Technology R&D Program of China (No. 2011BAE06B05), and the Fundamental Research Funds for the Central Universities (No. DUT10LK33), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, B., Yang, J. & Yang, Q. Biotransformation of nitro-polycyclic aromatic compounds by vegetable and fruit cell extracts. J. Zhejiang Univ. Sci. B 13, 248–253 (2012). https://doi.org/10.1631/jzus.B1100254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1100254

Key words

CLC number

Navigation