Skip to main content
Log in

Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

In order to investigate the physiological effects of airport noise exposure on organisms, in this study, we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d. For comparison, we also used unexposed control rats. Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (L wecpn ) of 75 and 80 dB for the two experimental groups. We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD). We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM). Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals. After 29 d of airport noise exposure, the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05). We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d. In conclusion, exposing rats to long-term aircraft noise affects their behaviors, plasma NE levels, and cell morphology of the temporal lobe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akdogan, O., Selcuk, A., Take, G., Erdoğan, D., Dere, H., 2009. Continuous or intermittent noise exposure, does it cause vestibular damage? An experimental study. Auris Nasus Larynx, 36(1):2–6. [doi:10.1016/j.anl.2008.03.003]

    Article  PubMed  Google Scholar 

  • Baxter, M.G., 2009. Involvement of medial temporal lobe structures in memory and perception. Neuron, 61(5): 667–677. [doi:10.1016/j.neuron.2009.02.007]

    Article  PubMed  CAS  Google Scholar 

  • Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P., Lipton, S.A., 1995. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. PNAS, 92(16):7162–7166. [doi:10.1073/pnas.92.16.7162]

    Article  PubMed  CAS  Google Scholar 

  • Conrad, C.D., Magariños, A.M., LeDoux, J.E., McEwen, B.S., 1999. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav. Neurosci., 113(5):902–913. [doi:10.1037/0735-7044.113.5.902]

    Article  PubMed  CAS  Google Scholar 

  • de Bartolomeis, A., Fiore, G., 2004. Postsynaptic density scaffolding proteins at excitatory synapse and disorders of synaptic plasticity: implications for human behavior pathologies. Int. Rev. Neurobiol., 59:221–254. [doi:10.1016/S0074-7742(04)59009-8]

    Article  PubMed  Google Scholar 

  • Esler, M., Jennings, G., Lambert, G., Meredith, I., Horne, M., Eisenhofer, G., 1990. Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol. Rev., 70(4):963–985.

    PubMed  CAS  Google Scholar 

  • Finlay, J.M., Zigmond, M.J., Abercrombie, E.D., 1995. Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience, 64(3):619–628. [doi:10.1016/0306-4522(94)00331-X]

    Article  PubMed  CAS  Google Scholar 

  • Franssen, E.A.M., van Wiechen, C.M.A.G., Nagelkerke, N.J.D., Lebret, E., 2004. Aircraft noise around a large international airport and its impact on general health and medication use. Occup. Environ. Med., 61(5):405–413. [doi:10.1136/oem.2002.005488]

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, D.S., 1981. Plasma norepinephrine as an indicator of sympathetic neural activity in clinical cardiology. Am. J. Cardiol., 48(6):1147–1154. [doi:10.1016/0002-9149(81)90333-7]

    Article  PubMed  CAS  Google Scholar 

  • Hou, G.L., 2002. An experimental study on the damaging of non-steady state noise on free cardiac effect radical. Chin. J. Appl. Psychol., 8(4):47–50 (in Chinese).

    Google Scholar 

  • Hu, B.H., Henderson, D., Nicotera, T.M., 2002. Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise. Hear. Res., 166(1–2):62–71. [doi:10.1016/S0378-5955(02)00286-1]

    Article  PubMed  Google Scholar 

  • Hugdahl, K., Løberg, E.M., Nygård, M., 2009. Left temporal lobe structural and functional abnormality underlying auditory hallucinations in schizophrenia. Front. Neurosci., 3(1):34–45. [doi:10.3389/neuro.01.001.2009]

    PubMed  Google Scholar 

  • Jarup, L., Babisch, W., Houthuijs, D., Pershagen, G., Katsouyanni, K., Cadum, E., Dudley, M.L., Savigny, P., Seiffert, I., Swart, W., et al., 2008. Hypertension and exposure to noise near airports: the HYENA study. Environ. Health Perspect., 6(3):329–333. [doi:10.1289/ehp.10775]

    Google Scholar 

  • Katz, R.J., Roth, K.A., Carroll, B.J., 1981. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci. Biobehav. Rev., 5(2):247–251. [doi:10.1016/0149-7634(81)90005-1]

    Article  PubMed  CAS  Google Scholar 

  • Knipschild, P., 1977. V. Medical effects of aircraft noise: community cardiovascular survey. Int. Arch. Occup. Environ. Health, 40(3):185–190. [doi:10.1007/BF01842081]

    Article  PubMed  CAS  Google Scholar 

  • Krebs, H., Macht, M., Weyers, P., Weijers, H.G., Janke, W., 1996. Effects of stressful noise on eating and non-eating behavior in rats. Appetite, 26(2):193–202. [doi:10.1006/appe.1996.0015]

    Article  PubMed  CAS  Google Scholar 

  • Lake, C.R., Gullner, H.G., Polinsky, R.J., Ebert, M.H., Ziegler, M.G., Bartter, F.C., 1981. Essential hypertension: central and peripheral norepinephrine. Science, 211(4485):955–957. [doi:10.1126/science.7466370]

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Ma, X.Q., Ye, F., Zhang, J., Zhou, X., Wang, Z.H., Li, Y.M., Zhang, G.Y., 2009. Expressions of cardiac sympathetic norepinephrine transporter and β1-adrenergic receptor decreased in aged rats. J. Zhejiang Univ.-Sci. B, 10(3):203–210. [doi:10.1631/jzus.B0820213]

    Article  PubMed  CAS  Google Scholar 

  • Makino, S., Iwata, M., Fujiwara, M., Ike, S., Tateyama, H., 2006. A case of sleep apnea syndrome manifesting severe hypertension with high plasma norepinephrine levels. Endocr. J., 53(3):363–369. [doi:10.1507/endocrj.K05-169]

    Article  PubMed  Google Scholar 

  • Matsui, T., Uehara, T., Miyakita, T., Hitamatsu, K., Osada, Y., Yamamoto, Y., 2004. The Okinawa study: effects of chronic aircraft noise on blood pressure and some other physiological indices. J. Sound Vib., 277(3):469–470. [doi:10.1016/j.jsv.2004.03.007]

    Article  Google Scholar 

  • Murchison, C.F., Zhang, X.Y., Zhang, W.P., Ouyang, M., Lee, A., Thomas, S.A., 2004. A distinct role for norepinephrine in memory retrieval. Cell, 117(1):131–143. [doi:10.1016/S0092-8674(04)00259-4]

    Article  PubMed  CAS  Google Scholar 

  • Okada, A., Ariizumi, M., Okamoto, G., 1983. Changes in cerebral norepinephrine induced by vibration or noise stress. Eur. J. Appl. Physiol., 52(1):94–97. [doi:10.1007/BF00429032]

    Article  CAS  Google Scholar 

  • Pan, F., Lu, C.Y., Song, J., Jing, H., Li, Q., Yu, H.L., Chen,.Y., 2006. Short communication: different duration of crowding and noise exposure effects on exploratory behavior, cellular immunity and HSP70 expression in rats. Stress Health, 22(4):257–262. [doi:10.1002/smi.1103]

    Article  Google Scholar 

  • Raskind, M.A., Peskind, E.R., Halter, J.B., Jimerson, D.C., 1984. Norepinephrine and MHPG levels in CSF and plasma in Alzheimer’s disease. Arch. Gen. Psychiatry, 41(4):343–346.

    Article  PubMed  CAS  Google Scholar 

  • Samson, J., Sheeladevi, R., Ravindran, R., Senthilvelan, M., 2007. Stress response in rat brain after different durations of noise exposure. Neurosci. Res., 57(1):143–147. [doi:10.1016/j.neures.2006.09.019]

    Article  PubMed  Google Scholar 

  • Silveira, P.P., Xavier, M.H., Souza, F.H., Manoli, L.P., Rosat, R.M., Ferreira, M.B., Dalmaz, C., 2000. Interaction between repeated restraint stress and concomitant midazolam administration on sweet food ingestion in rats. Braz. J. Med. Biol. Res., 33(11):1343–1350. [doi:10.1590/S0100-879X2000001100013]

    Article  PubMed  CAS  Google Scholar 

  • Spreng, M., 2000. Possible health effects of noise induced cortisol increase. Noise Health, 2(7):59–63.

    PubMed  Google Scholar 

  • Suzuki, W.A., Baxter, M.G., 2009. Memory, perception, and the medial temporal lobe: a synthesis of opinions. Neuron, 61(5):678–679. [doi:10.1016/j.neuron.2009.02.009]

    Article  PubMed  CAS  Google Scholar 

  • Vaernes, R., Ursin, H., Darragh, A., Lambe, R., 1982. Endocrine response patterns and psychological correlates. J. Psychosom. Res., 26(2):123–131. [doi:10.1016/0022-3999(82)90030-7]

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Torres, M.A., Gil-Loyzaga, P., 1999. Noise stimulation decreases the concentration of norepinephrine in the rat cochlea. Neurosci. Lett., 266(3):217–219. [doi:10.1016/S0304-3940(99)00305-5]

    Article  PubMed  CAS  Google Scholar 

  • Vitale, G., Arletti, R., Sandrini, M., 2005. Acute noise stress analgesia in relation to 5-HT2 and μ-opioid receptor changes in the frontal cortex of young mice. Life Sci., 77(20):2500–2513. [doi:10.1016/j.lfs.2005.01.031]

    Article  PubMed  CAS  Google Scholar 

  • Walsh, R.N., Cummins, R.A., 1976. The open-field test: a critical review. Psychol. Bull., 83(3):482–504. [doi:10.1037/0033-2909.83.3.482]

    Article  PubMed  CAS  Google Scholar 

  • Yasunari, K., Matsui, T., Maeda, K., Nakamura, M., Watanabe, T., Kiriike, N., 2006. Anxiety-induced plasma norepinephrine augmentation increases reactive oxygen species formation by monocytes in essential hypertension. Am. J. Hypertens., 19(6):573–578. [doi:10.1016/j.amjhyper.2005.10.027]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-qing Di.

Additional information

Project supported by the National Natural Science Foundation of China (No. 1060408), and the National Public Benefit Research Foundation of China (No. 200809142)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di, Gq., Zhou, B., Li, Zg. et al. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe. J. Zhejiang Univ. Sci. B 12, 969–975 (2011). https://doi.org/10.1631/jzus.B1000439

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1000439

Key words

CLC number

Navigation