Skip to main content
Log in

Changes of paired-pulse evoked responses during the development of epileptic activity in the hippocampus

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Dysfunction of inhibitory synaptic transmission can destroy the balance between excitatory and inhibitory synaptic inputs in neurons, thereby inducing epileptic activity. The aim of the paper is to investigate the effects of successive excitatory inputs on the epileptic activity induced in the absence of inhibitions. Paired-pulse orthodromic and antidromic stimulations were used to test the changes in the evoked responses in the hippocampus. Picrotoxin (PTX), γ-aminobutyric acid (GABA) type A (GABAA) receptor antagonist, was added to block the inhibitory synaptic transmission and to establish the epileptic model. Extracellular evoked population spike (PS) was recorded in the CA1 region of the hippocampus. The results showed that the application of PTX induced a biphasic change in the paired-pulse ratio of PS amplitude. A short latency increase of the second PS (PS2) was later followed by a reappearance of PS2 depression. This type of depression was observed in both orthodromic and antidromic paired-pulse responses, whereas the GABAergic PS2 depression [called paired-pulse depression (PPD)] during baseline recordings only appeared in orthodromic-evoked responses. In addition, the depression duration at approximately 100 ms was consistent with a relative silent period observed within spontaneous burst discharges induced by prolonged application of PTX. In conclusion, the neurons may ignore the excitatory inputs and intrinsically generate bursts during epileptic activity. The depolarization block could be the mechanisms underlying the PPD in the absence of GABAA inhibitions. The distinct neuronal responses to stimulations during different epileptic stages may implicate the different antiepileptic effects of electrical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson, T.E., Walby, W.F., Stark, L.G., Joy, R.M., 1996. The effect of propofol on CA1 pyramidal cell excitability and GABAA-mediated inhibition in the rat hippocampal slice. Life Sci., 58(26):2397–2407. [doi:10.1016/0024-3205(96)00243-3]

    Article  PubMed  CAS  Google Scholar 

  • Alger, B.E., Nicoll, R.A., 1980. Epileptiform burst afterhyperolarization: calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science, 210(4474): 1122–1124. [doi:10.1126/science.7444438]

    Article  PubMed  CAS  Google Scholar 

  • Alger, B.E., Nicoll, R.A., 1982. Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J. Physiol., 328:105–123.

    PubMed  CAS  Google Scholar 

  • Badawy, R.A., Harvey, A.S., Macdonell, R.A., 2009. Cortical hyperexcitability and epileptogenesis: understanding the mechanisms of epilepsy-Part 1. J. Clin. Neurosci., 16(3): 355–365. [doi:10.1016/j.jocn.2008.08.026]

    Article  PubMed  CAS  Google Scholar 

  • Bikson, M., Hahn, P.J., Fox, J.E., Jefferys, J.G., 2003. Depolarization block of neurons during maintenance of electrographic seizures. J. Neurophysiol., 90(4):2402–2408. [doi:10.1152/jn.00467.2003]

    Article  PubMed  Google Scholar 

  • Cunha-Reis, D., Sebastiao, A.M., Wirkner, K., Illes, P., Ribeiro, J.A., 2004. VIP enhances both pre- and postsynaptic GABAergic transmission to hippocampal interneurones leading to increased excitatory synaptic transmission to CA1 pyramidal cells. Br. J. Pharmacol., 143(6): 733–744. [doi:10.1038/sj.bjp.0705989]

    Article  PubMed  CAS  Google Scholar 

  • de Almeida, A.C., Rodrigues, A.M., Scorza, F.A., Cavalheiro, E.A., Teixeira, H.Z., Duarte, M.A., Silveira, G.A., Arruda, E.Z., 2008. Mechanistic hypotheses for nonsynaptic epileptiform activity induction and its transition from the interictal to ictal state-computational simulation. Epilepsia, 49(11):1908–1924. [doi:10.1111/j.1528-1167.2008.01686.x]

    Article  PubMed  Google Scholar 

  • de Curtis, M., Avanzini, G., 2001. Interictal spikes in focal epileptogenesis. Prog. Neurobiol., 63(5):541–567. [doi:10.1016/S0301-0082(00)00026-5]

    Article  PubMed  Google Scholar 

  • Dzhala, V.I., Staley, K.J., 2003. Transition from interictal to ictal activity in limbic networks in vitro. J. Neurosci., 23(21):7873–7880.

    PubMed  CAS  Google Scholar 

  • Feng, Z.Y., Zheng, X.J., Wang, J., 2009. Effects of carnosine on the evoked potentials in hippocampal CA1 region. J. Zhejiang Univ. Sci.-B, 10(7):505–511. [doi:10.1631/jzus.B0820370]

    Article  PubMed  CAS  Google Scholar 

  • Freund, T.F., Buzsaki, G., 1996. Interneurons of the hippocampus. Hippocampus, 6(4):347–470. [doi:10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I]

    Article  PubMed  CAS  Google Scholar 

  • Hablitz, J.J., 1984. Picrotoxin-induced epileptiform activity in hippocampus: role of endogenous versus synaptic factors. J. Neurophysiol., 51(5):1011–1027.

    PubMed  CAS  Google Scholar 

  • Hablitz, J.J., 2004. Regulation of circuits and excitability: implications for epileptogenesis. Epilepsy Curr., 4(4): 151–153. [doi:10.1111/j.1535-7597.2004.44011.x]

    Article  PubMed  Google Scholar 

  • Karnup, S., Stelzer, A., 1999. Temporal overlap of excitatory and inhibitory afferent input in guinea-pig CA1 pyramidal cells. J. Physiol., 516(P2):485–504. [doi:10.1111/j.1469-7793.1999.0485v.x]

    Article  PubMed  CAS  Google Scholar 

  • Kloosterman, F., Peloquin, P., Leung, L.S., 2001. Apical and basal orthodromic population spikes in hippocampal CA1 in vivo show different origins and patterns of propagation. J. Neurophysiol., 86(5):2435–2444.

    PubMed  CAS  Google Scholar 

  • Leung, L.S., Peloquin, P., Canning, K.J., 2008. Paired-pulse depression of excitatory postsynaptic current sinks in hippocampal CA1 in vivo. Hippocampus, 18(10):1008–1020. [doi:10.1002/hipo.20458]

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Leung, L.S., 2004. Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells. Brain Res., 1023(2):185–192. [doi:10.1016/j.brainres.2004.07.017]

    Article  PubMed  CAS  Google Scholar 

  • Margineanu, D.G., Wulfert, E., 2000. Differential paired-pulse effects of gabazine and bicuculline in rat hippocampal CA3 area. Brain Res. Bull., 51(1):69–74. [doi:10.1016/S0361-9230(99)00209-9]

    Article  PubMed  CAS  Google Scholar 

  • Muller, W., Misgeld, U., 1991. Picrotoxin- and 4-aminopyridine-induced activity in hilar neurons in the guinea pig hippocampal slice. J. Neurophysiol., 65(1):141–147.

    PubMed  CAS  Google Scholar 

  • Papatheodoropoulos, C., Kostopoulos, G., 1998. Development of a transient increase in recurrent inhibition and pairedpulse facilitation in hippocampal CA1 region. Brain Res. Dev., 108(1–2):273–285. [doi:10.1016/S0165-3806(98)00061-3]

    Article  CAS  Google Scholar 

  • Schiller, Y., Bankirer, Y., 2007. Cellular mechanisms underlying antiepileptic effects of low- and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro. J. Neurophysiol., 97(3):1887–1902. [doi:10.1152/jn.00514.2006]

    Article  PubMed  Google Scholar 

  • Su, Y., Radman, T., Vaynshteyn, J., Parra, L.C., Bikson, M., 2008. Effects of high-frequency stimulation on epileptiform activity in vitro: ON/OFF control paradigm. Epilepsia, 49(9):1586–1593. [doi:10.1111/j.1528-1167.2008.01592.x]

    Article  PubMed  Google Scholar 

  • Uruno, K., O’Connor, M.J., Masukawa, L.M., 1995. Effects of bicuculline and baclofen on paired-pulse depression in the dentate gyrus of epileptic patients. Brain Res., 695(2): 163–172. [doi:10.1016/0006-8993(95)00652-7]

    Article  PubMed  CAS  Google Scholar 

  • Wierenga, C.J., Wadman, W.J., 2003. Functional relation between interneuron input and population activity in the rat hippocampal cornu ammonis 1 area. Neuroscience, 118(4):1129–1139. [doi:10.1016/S0306-4522(03)00060-5]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou-yan Feng.

Additional information

Project (Nos. 30770548 and 30970753) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Zy., Zheng, Xj., Tian, C. et al. Changes of paired-pulse evoked responses during the development of epileptic activity in the hippocampus. J. Zhejiang Univ. Sci. B 12, 704–711 (2011). https://doi.org/10.1631/jzus.B1000316

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1000316

Key words

CLC number

Navigation