Skip to main content

Advertisement

Log in

Construction and detection of expression vectors of microRNA-9a in BmN cells

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small endogenous RNAs molecules, approximately 21–23 nucleotides in length, which regulate gene expression by base-pairing with 3′ untranslated regions (UTRs) of target mRNAs. However, the functions of only a few miRNAs in organisms are known. Recently, the expression vector of artificial miRNA has become a promising tool for gene function studies. Here, a method for easy and rapid construction of eukaryotic miRNA expression vector was described. The cytoplasmic actin 3 (A3) promoter and flanked sequences of miRNA-9a (miR-9a) precursor were amplified from genomic DNA of the silkworm (Bombyx mori) and was inserted into pCDNA3.0 vector to construct a recombinant plasmid. The enhanced green fluorescent protein (EGFP) gene was used as reporter gene. The Bombyx mori N (BmN) cells were transfected with recombinant miR-9a expression plasmid and were harvested 48 h post transfection. Total RNAs of BmN cells transfected with recombinant vectors were extracted and the expression of miR-9a was evaluated by reverse transcriptase polymerase chain reaction (RT-PCR) and Northern blot. Tests showed that the recombinant miR-9a vector was successfully constructed and the expression of miR-9a with EGFP was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambros, V., 2003. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell, 113(6): 673–676. [doi:10.1016/S0092-8674(03)00428-8]

    Article  PubMed  CAS  Google Scholar 

  • Bartel, D.P., 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281–297. [doi:10.1016/S0092-8674(04)00045-5]

    Article  PubMed  CAS  Google Scholar 

  • Bartel, D.P., 2009. MicroRNAs: target recognition and regulatory functions. Cell, 136(2):215–233. [doi:10.1016/j.cell.2009.01.002]

    Article  PubMed  CAS  Google Scholar 

  • Bejarano, F., Smibert, P., Lai, E.C., 2009. miR-9a prevents apoptosis during wing development by repressing Drosophila LIM-only. Dev. Biol., 338(1):63–73. [doi:10.1016/j.ydbio.2009.11.025]

    Article  PubMed  Google Scholar 

  • Biryukova, I., Asmar, J., Abdesselem, H., Heitzler, P., 2009. Drosophila mir-9a regulates wing development via fine-tuning expression of the LIM only factor, dLMO. Dev. Biol., 327(2):487–496. [doi:10.1016/j.ydbio.2008.12.036]

    Article  PubMed  CAS  Google Scholar 

  • Bushati, N., Cohen, S.M., 2007. microRNA functions. Annu. Rev. Cell Dev. Biol., 23(1):175–205. [doi:10.1146/annurev.cellbio.23.090506.123406]

    Article  PubMed  CAS  Google Scholar 

  • Cai, X., Hagedorn, C.H., Cullen, B.R., 2004. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10(12): 1957–1966. [doi:10.1261/rna.7135204]

    Article  PubMed  CAS  Google Scholar 

  • Cai, Y., Yu, X., Zhou, Q., Yu, C., Hu, H., Liu, J., Lin, H., Yang, J., Zhang, B., Cui, P., et al., 2010. Novel microRNAs in silkworm (Bombyx mori). Funct. Integr. Genomics, 10(3):405–415. [doi:10.1007/s10142-010-0162-7]

    Article  PubMed  CAS  Google Scholar 

  • Cao, J., Tong, C., Wu, X., Lv, J., Yang, Z., Jin, Y., 2008. Identification of conserved microRNAs in Bombyx mori (silkworm) and regulation of fibroin L chain production by microRNAs in heterologous system. Insect Biochem. Mol. Biol., 38(12):1066–1071. [doi:10.1016/j.ibmb.2008.09.008]

    Article  PubMed  CAS  Google Scholar 

  • Chang, K., Elledge, S.J., Hannon, G.J., 2006. Lessons from Nature: microRNA-based shRNA libraries. Nat. Methods, 3(9):707–714. [doi:10.1038/nmeth923]

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., et al., 2005. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic. Acids Res., 33(20):e179. [doi:10.1093/nar/gni178]

    Article  PubMed  Google Scholar 

  • Chen, C.Z., Li, L., Lodish, H.F., Bartel, D.P., 2004. MicroRNAs modulate hematopoietic lineage differentiation. Science, 303(5654):83–86. [doi:10.1126/science.1091903]

    Article  PubMed  CAS  Google Scholar 

  • Du, G., Yonekubo, J., Zeng, Y., Osisami, M., Frohman, M.A., 2006. Design of expression vectors for RNA interference based on miRNAs and RNA splicing. FEBS J., 273(23): 5421–5427. [doi:10.1111/j.1742-4658.2006.05534.x]

    Article  PubMed  CAS  Google Scholar 

  • Feng, J., Wang, K., Liu, X., Chen, S., Chen, J., 2009. The quantification of tomato microRNAs response to viral infection by stem-loop real-time RT-PCR. Gene, 437(1–2): 14–21. [doi:10.1016/j.gene.2009.01.017]

    Article  PubMed  CAS  Google Scholar 

  • Filipowicz, W., Bhattacharyya, S.N., Sonenberg, N., 2008. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet., 9:102–114. [doi:10.1038/nrg2290]

    Article  PubMed  CAS  Google Scholar 

  • Friedman, R.C., Farh, K.K., Burge, C.B., Bartel, D.P., 2009. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 19(1):92–105. [doi:10.1101/gr.082701.108]

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, Y., Kawasaki, H., Taira, K., 2006. Construction of microRNA-containing vectors for expression in mammalian cells. Methods Mol. Biol., 338:167–173. [doi:10.1385/1-59745-097-9:167]

    PubMed  CAS  Google Scholar 

  • Gou, D., Zhang, H., Baviskar, P.S., Liu, L., 2007. Primer extension-based method for the generation of a siRNA/miRNA expression vector. Physiol. Genomics, 31(3): 554–562. [doi:10.1152/physiolgenomics.00005.2007]

    Article  PubMed  CAS  Google Scholar 

  • Han, J., Lee, Y., Yeom, K.H., Nam, J.W., Heo, I., Rhee, J.K., Sohn, S.Y., Cho, Y., Zhang, B.T., Kim, V.N., 2006. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 125(5):887–901. [doi:10.1016/j.cell.2006.03.043]

    Article  PubMed  CAS  Google Scholar 

  • He, P.A., Nie, Z., Chen, J., Lv, Z., Sheng, Q., Zhou, S., Gao, X., Kong, L., Wu, X., Jin, Y., et al., 2008. Identification and characteristics of microRNAs from Bombyx mori. BMC Genomics, 9(1):248. [doi:10.1186/1471-2164-9-248]

    Article  PubMed  Google Scholar 

  • Hong, X., Hammell, M., Ambros, V., Cohen, S.M., 2009. Immunopurification of Ago1 miRNPs selects for a distinct class of microRNA targets. PNAS, 106(35):15085–15090. [doi:10.1073/pnas.0908149106]

    Article  PubMed  CAS  Google Scholar 

  • Hu, T., Fu, Q., Chen, P., Ma, L., Sin, O., Guo, D., 2009. Construction of an artificial microRNA expression vector for simultaneous inhibition of multiple genes in mammalian cells. Int. J. Mol. Sci., 10(5):2158–2168. [doi:10.3390/ijms10052158]

    Article  PubMed  CAS  Google Scholar 

  • Hu, T., Chen, P., Fu, Q., Liu, Y., Ishaq, M., Li, J., Ma, L., Guo, D., 2010. Comparative studies of various artificial microRNA expression vectors for RNAi in mammalian cells. Mol. Biotechnol., 46(1):34–40. [doi:10.1007/s12033-010-9264-7]

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y., Zou, Q., Tang, S.M., Wang, L.G., Shen, X.J., 2009. Computational identification and characteristics of novel microRNAs from the silkworm (Bombyx mori L.). Mol. Biol. Rep., 37(7):3171–3176. [doi:10.1007/s11033-009-9897-4]

    Article  PubMed  Google Scholar 

  • Jagadeeswaran, G., Zheng, Y., Sumathipala, N., Jiang, H., Arrese, E.L., Soulages, J.L., Zhang, W., Sunkar, R., 2010. Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics, 11(1):52. [doi:10.1186/1471-2164-11-52]

    Article  PubMed  Google Scholar 

  • Li, Y., Wang, F., Lee, J.A., Gao, F.B., 2006. MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes. Dev., 20(20):2793–2805. [doi:10.1101/gad.1466306]

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., 2008. Control of protein synthesis and mRNA degradation by microRNAs. Curr. Opin. Cell Biol., 20(2): 214–221. [doi:10.1016/j.ceb.2008.01.006]

    Article  PubMed  CAS  Google Scholar 

  • Liu, S., Zhang, L., Li, Q., Zhao, P., Duan, J., Cheng, D., Xiang, Z., Xia, Q., 2009. MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori). BMC Genomics, 10(1):455. [doi:10.1186/1471-2164-10-455]

    Article  PubMed  Google Scholar 

  • Liu, S., Li, D., Li, Q., Zhao, P., Xiang, Z., Xia, Q., 2010. MicroRNAs of Bombyx mori identified by Solexa sequencing. BMC Genomics, 11(1):148. [doi:10.1186/1471-2164-11-148]

    Article  PubMed  Google Scholar 

  • Molnar, A., Bassett, A., Thuenemann, E., Schwach, F., Karkare, S., Ossowski, S., Weigel, D., Baulcombe, D., 2009. Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J., 58(1):165–174. [doi:10.1111/j.1365-313X.2008.03767.x]

    Article  CAS  Google Scholar 

  • Niu, Q.W., Lin, S.S., Reyes, J.L., Chen, K.C., Wu, H.W., Yeh, S.D., Chua, N.H., 2006. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol., 24(11):1420–1428. [doi:10.1038/nbt1255]

    Article  PubMed  CAS  Google Scholar 

  • Parizotto, E.A., Dunoyer, P., Rahm, N., Himber, C., Voinnet, O., 2004. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev., 18(18):2237–2242. [doi:10.1101/gad.307804]

    Article  PubMed  CAS  Google Scholar 

  • Park, W., Zhai, J., Lee, J.Y., 2009. Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes. Plant Cell Rep., 28(3):469–480. [doi:10.1007/s00299-008-0651-5]

    Article  PubMed  CAS  Google Scholar 

  • Pillai, R.S., Bhattacharyya, S.N., Filipowicz, W., 2007. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol., 17(3):118–126. [doi:10.1016/j.tcb.2006.12.007]

    Article  PubMed  CAS  Google Scholar 

  • Qiu, L., Wang, H., Xia, X., Zhou, H., Xu, Z., 2008. A construct with fluorescent indicators for conditional expression of miRNA. BMC Biotechnol., 8(1):77. [doi:10.1186/1472-6750-8-77]

    Article  PubMed  Google Scholar 

  • Ritchie, W., Legendre, M., Gautheret, D., 2007. RNA stemloops: to be or not to be cleaved by RNAse III. RNA, 13(4):457–462. [doi:10.1261/rna.366507]

    Article  PubMed  CAS  Google Scholar 

  • Rumi, M., Ishihara, S., Aziz, M., Kazumori, H., Ishimura, N., Yuki, T., Kadota, C., Kadowaki, Y., Kinoshita, Y., 2006. RNA polymerase II mediated transcription from the polymerase III promoters in short hairpin RNA expression vector. Biochem. Biophys. Res. Commun., 339(2): 540–547. [doi:10.1016/j.bbrc.2005.11.037]

    Article  PubMed  CAS  Google Scholar 

  • Sakurai, H., Izumi, S., Tomino, S., 1990. In vitro transcription of the plasma protein genes of Bombyx mori. Biochim. Biophys. Acta, 1087(1):18–24. [doi:10.1016/0167-4781(90)90115-I]

    PubMed  CAS  Google Scholar 

  • Scherr, M., Eder, M., 2007. Gene silencing by small regulatory RNAs in mammalian cells. Cell Cycle, 6(4):444–449. [doi:10.4161/cc.6.4.3807]

    Article  PubMed  CAS  Google Scholar 

  • Schmollinger, S., Strenkert, D., Schroda, M., 2010. An inducible artificial microRNA system for Chlamydomonas reinhardtii confirms a key role for heat shock factor 1 in regulating thermotolerance. Curr. Genet., 56(4): 383–389. [doi:10.1007/s00294-010-0304-4]

    Article  PubMed  CAS  Google Scholar 

  • Shan, Z., Lin, Q., Deng, C., Li, X., Huang, W., Tan, H., Fu, Y., Yang, M., Yu, X., 2009. An efficient method to enhance gene silencing by using precursor microRNA designed small hairpin RNAs. Mol. Biol. Rep., 36(6):1483–1489. [doi:10.1007/s11033-008-9339-8]

    Article  PubMed  CAS  Google Scholar 

  • Shan, Z., Lin, Q., Deng, C., Zhou, Z., Tan, H., Fu, Y., Li, X., Zhu, J., Mai, L., Kuang, S., et al., 2010. Comparison of approaches for efficient gene silencing induced by microRNA-based short hairpin RNA and indicator gene expression. Mol. Biol. Rep., 37(4):1831–1839. [doi:10.1007/s11033-009-9618-z]

    Article  PubMed  CAS  Google Scholar 

  • Shibata, A., Iwaki, A., Fukumaki, Y., 2007. A novel expression system for artificial miRNAs containing no endogenous miRNA precursor sequences. J. RNAi Gene Silencing, 3(1):237–247.

    PubMed  CAS  Google Scholar 

  • Silva, J.M., Li, M.Z., Chang, K., Ge, W., Golding, M.C., Rickles, R.J., Siolas, D., Hu, G., Paddison, P.J., Schlabach, M.R., et al., 2005. Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet., 37:1281–1288. [doi:10.1038/ng1650]

    PubMed  CAS  Google Scholar 

  • Stefani, G., Slack, F.J., 2008. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol., 9(3): 219–230. [doi:10.1038/nrm2347]

    Article  PubMed  CAS  Google Scholar 

  • Sun, D., Melegari, M., Sridhar, S., Rogler, C.E., Zhu, L., 2006. Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques, 41(1):59–63. [doi:10.2144/000112203]

    Article  PubMed  CAS  Google Scholar 

  • Sun, H., Li, Q.W., Lv, X.Y., Ai, J.Z., Yang, Q.T., Duan, J.J., Bian, G.H., Xiao, Y., Wang, Y.D., Zhang, Z., et al., 2010. MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation. Mol. Biol. Rep., 37(6):2951–2958. [doi:10.1007/s11033-009-9861-3]

    Article  PubMed  CAS  Google Scholar 

  • Tang, G., Tang, X., Mendu, V., Jia, X., Chen, Q.J., He, L., 2008. The art of microRNA: various strategies leading to gene silencing via an ancient pathway. Biochim. Biophys. Acta, 1779(11):655–662. [doi:10.1016/j.bbagrm.2008.06.006]

    PubMed  CAS  Google Scholar 

  • Tong, C.Z., Jin, Y.F., Zhang, Y.Z., 2006. Computational prediction of microRNA genes in silkworm genome. J. Zhejiang Univ.-Sci. B, 7(10):806–816. [doi:10.1631/jzus.2006.B0806]

    Article  PubMed  CAS  Google Scholar 

  • Trujillo, R.D., Yue, S.B., Tang, Y., O’Gorman, W.E., Chen, C.Z., 2010. The potential functions of primary microRNAs in target recognition and repression. EMBO J., 29(19):3272–3285. [doi:10.1038/emboj.2010.208]

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret, H., Vazquez, F., Crete, P., Bartel, D.P., 2004. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev., 18(10):1187–1197. [doi:10.1101/gad.1201404]

    Article  PubMed  CAS  Google Scholar 

  • Xu, J., Zeng, J.Q., Wan, G., Hu, G.B., Yan, H., Ma, L.X., 2009. Construction of siRNA/miRNA expression vectors based on a one-step PCR process. BMC Biotechnol., 9(1):53. [doi:10.1186/1472-6750-9-53]

    Article  PubMed  Google Scholar 

  • Yu, X., Zhou, Q., Li, S.C., Luo, Q., Cai, Y., Lin, W.C., Chen, H., Yang, Y., Hu, S., Yu, J., 2008. The silkworm (Bombyx mori) microRNAs and their expressions in multiple developmental stages. PLoS One, 3(8):e2997. [doi:10.1371/journal.pone.0002997]

    Article  PubMed  Google Scholar 

  • Yu, X., Zhou, Q., Cai, Y., Luo, Q., Lin, H., Hu, S., Yu, J., 2009. A discovery of novel microRNAs in the silkworm (Bombyx mori) genome. Genomics, 94(6):438–444. [doi:10.1016/j.ygeno.2009.08.007]

    Article  PubMed  CAS  Google Scholar 

  • Zeng, Y., Cullen, B.R., 2005. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J. Biol. Chem., 280(30): 27595–27603. [doi:10.1074/jbc.M504714200]

    Article  PubMed  CAS  Google Scholar 

  • Zeng, Y., Wagner, E.J., Cullen, B.R., 2002. Both natural and designed microRNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell, 9(6):1327–1333. [doi:10.1016/S1097-2765(02)00541-5]

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Zhou, X., Ge, X., Jiang, J., Li, M., Jia, S., Yang, X., Kan, Y., Miao, X., Zhao, G., et al., 2009. Insect-specific microRNA involved in the development of the silkworm Bombyx mori. PLoS One, 4(3):e4677. [doi:10.1371/journal.pone.0004677]

    Article  PubMed  Google Scholar 

  • Zhou, H., Xia, X.G., Xu, Z., 2005. An RNA polymerase II construct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi. Nucleic Acids Res., 33(6):e62. [doi:10.1093/nar/gni061]

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-jia Shen.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2005CB121004), the National High-Tech R & D Program (863) of China (No. 2006AA10A119), the Innovation Foundation for Graduate Students of Jiangsu Province, and the National Natural Science Foundation of China (No. 61001013)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Zou, Q., Wang, Sp. et al. Construction and detection of expression vectors of microRNA-9a in BmN cells. J. Zhejiang Univ. Sci. B 12, 527–533 (2011). https://doi.org/10.1631/jzus.B1000296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1000296

Key words

CLC number

Navigation