Skip to main content

Advertisement

Log in

Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi

  • Review
  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Conidial fungi or molds and mildews are widely used in modern biotechnology as producers of antibiotics and other secondary metabolites, industrially important enzymes, chemicals and food. They are also important pathogens of animals including humans and agricultural crops. These various applications and extremely versatile natural phenotypes have led to the constantly growing list of complete genomes which are now available. Functional genomics and proteomics widely exploit the genomic information to study the cell-wide impact of altered genes on the phenotype of an organism and its function. This allows for global analysis of the information flow from DNA to RNA to protein, but it is usually not sufficient for the description of the global phenotype of an organism. More recently, Phenotype MicroArray (PM) technology has been introduced as a tool to characterize the metabolism of a (wild) fungal strain or a mutant. In this article, we review the background of PM applications for fungi and the methodic requirements to obtain reliable results. We also report examples of the versatility of this tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antal, Z., Kredics, L., Dóczi, I., Manczinger, L., Kevei, F., Nagy, E., 2002. The physiological features of opportunistic Trichoderma strains. Acta Microbiol. Immunol. Hung., 49:393.

    Google Scholar 

  • Arnone, M.I., Dmochowski, I.J., Gache, C., 2004. Using reporter genes to study cis-regulatory elements. Methods Cell Biol., 74:621–652. [doi:10.1016/S0091-679X(04)74025-X]

    Article  CAS  PubMed  Google Scholar 

  • Arst, H.N.Jr., Cove, D.J., 1973. Nitrogen metabolite repression in Aspergillus nidulans. Mol. Gen. Genet., 126(2):111–141. [doi:10.1007/BF00330988]

    Article  CAS  PubMed  Google Scholar 

  • Arst, H.N.Jr., Scazzocchio, C., 1975. Initiator constitutive mutation with an up-promoter effect in Aspergillus nidulans. Nature, 254(5495):31–34. [doi:10.1038/254031a0]

    Article  CAS  PubMed  Google Scholar 

  • Avalos, J., Geever, R.F., Case, M.E., 1989. Bialaphos resistance as a dominant selectable marker in Neurospora crassa. Curr. Genet., 16(5–6):369–372. [doi:10.1007/BF00340716]

    Article  CAS  PubMed  Google Scholar 

  • Avery, R.K., 2004. Prophylactic strategies before solid-organ transplantation. Curr. Opin. Infect. Dis., 17(4):353–356. [doi:10.1097/01.qco.0000136936.13662.74]

    Article  PubMed  Google Scholar 

  • Bailey, C., Arst, H.N.Jr., 1975. Carbon catabolite repression in Aspergillus nidulans. Eur. J. Biochem., 51(2):573–577. [doi:10.1111/j.1432-1033.1975.tb03958.x]

    Article  CAS  PubMed  Google Scholar 

  • Barredo, J.L., Alvarez, E., Cantoral, J.M., Diez, B., Martin, J.F., 1988. Glucokinase-deficient mutant of Penicillium chrysogenum is derepressed in glucose catabolite regulation of both beta-galactosidase and penicillin biosynthesis. Antimicrob. Agents Chemother., 32(7):1061–1067.

    CAS  PubMed  Google Scholar 

  • Blayer, S., Woodley, J.M., Dawson, M.J., Lilly, M.D., 1999. Alkaline biocatalysis for the direct synthesis of N-acetyl-D-neuraminic acid (Neu5Ac) from N-acetyl-D-glucosamine (GlcNAc). Biotechnol Bioeng., 66(2):131–136. [doi:10.1002/(SICI)1097-0290(1999)66:2〈131::AID-BIT6〉3.0.CO;2-X]

    Article  CAS  PubMed  Google Scholar 

  • Bochner, B.R., 1988. New methods aid microbial identification. Bio/Technology, 6(7):756. [doi:10.1038/nbt0788-756]

    Article  Google Scholar 

  • Bochner, B.R., 1989. Sleuthing out bacterial identities. Nature, 339(6220):157–158. [doi:10.1038/339157a0]

    Article  CAS  PubMed  Google Scholar 

  • Bochner, B.R., 2003. New technologies to assess genotype-phenotype relationships. Nature Rev. Genet., 4(4):309–314. [doi:10.1038/nrg1046]

    Article  CAS  PubMed  Google Scholar 

  • Bochner, B.R., Gadzinski, P., Panomitros, E., 2001. Phenotype MicroArrays for high-throughput phenotypic testing and assay of gene function. Genome Res., 11(7):1246–1255. [doi:10.1101/gr.186501]

    Article  CAS  PubMed  Google Scholar 

  • Brunner, K., Peterbauer, C.K., Mach, R.L., Lorito, M., Zeilinger, S., Kubicek, C.P., 2003. The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr. Genet., 43(4):289–295. [doi:10.1007/s00294-003-0399-y]

    Article  CAS  PubMed  Google Scholar 

  • Brunner, K., Omann, M., Pucher, M.E., Delic, M., Lehner, S., Domnanich, P., Kratochwill, K., Druzhinina, I., Zeilinger, S., 2008. Trichoderma G protein-coupled receptors: genome analysis and functional characterization of a cAMP receptor-like protein from Trichoderma atroviride. Curr Genet., 54(6):283–299. [doi:10.1007/s00294-008-0217-7]

    Article  CAS  PubMed  Google Scholar 

  • Caddick, M.X., Peters, D., Platt, A., 1994. Nitrogen regulation in fungi. Antonie Van Leeuwenhoek, 65(3):169–177. [doi:10.1007/BF00871943]

    Article  CAS  PubMed  Google Scholar 

  • Campos-Herrero, M.I., Bordes, A., Perera, A., Ruiz, M.C., Fernandez, A., 1996. Trichoderma koningii peritonitis in a patient undergoing peritoneal dialysis. Clin. Microbiol. Newslett., 18(19):150–151. [doi:10.1016/0196-4399(96)83918-3]

    Article  Google Scholar 

  • Carsolio, C., Benhamou, N., Haran, S., Cortes, C., Gutierrez, A., Chet, I., Herrera-Estrella, A., 1999. Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl. Environ. Microbiol., 65(3):929–935.

    CAS  PubMed  Google Scholar 

  • Casas-Flores, S., Rios-Momberg, M., Bibbins, M., Ponce-Noyola, P., Herrera-Estrella, A., 2004. BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride. Microbiology, 150(Pt 11):3561–3569. [doi:10.1099/mic.0.27346-0]

    Article  CAS  PubMed  Google Scholar 

  • Chaveroche, M.K., Ghigo, J.M., d’Enfert, C., 2000. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res., 28(22):E97. [doi:10.1093/nar/28.22.e97]

    Article  CAS  PubMed  Google Scholar 

  • dela Cruz, T.E.E., Schulz, B.E., Kubicek, C.P., Druzhinina, I.S., 2006. Carbon source utilization by themarine Dendryphiella species D. arenaria and D. salina. FEMS Microbiol. Ecol., 58(3):343–353. [doi:10.1111/j.1574-6941.2006.00184.x]

    Article  Google Scholar 

  • Dogra, N., Breuil, C., 2004. Suppressive subtractive hybridization and differential screening identified genes differentially expressed in yeast and mycelial forms of Ophiostoma piceae. FEMS Microbiol. Lett., 238(1):175–181. [doi:10.1111/j.1574-6968.2004.tb09753.x]

    CAS  PubMed  Google Scholar 

  • Donzelli, B.G., Harman, G.E., 2001. Interaction of ammonium, glucose, and chitin regulates the expression of cell wall-degrading enzymes in Trichoderma atroviride strain P1. Appl. Environ. Microbiol., 67(12):5643–5647. [doi:10.1128/AEM.67.12.5643-5647.2001]

    Article  CAS  PubMed  Google Scholar 

  • Dowzer, C.E.A., Kelly, J.M., 1991. Analysis of the creA gene, a regulator of carbon catabolite repression. Mol. Cell. Biol., 11(11):5701–5709.

    CAS  PubMed  Google Scholar 

  • Druzhinina, I.S., Schmoll, M., Seiboth, B., Kubicek, C.P., 2006. Global carbon utilization profiles of wild-type strains, mutants and transformants of Hypocrea jecorina. Appl. Environ. Microbiol., 72(3):2126–2133. [doi:10.1128/AEM.72.3.2126-2133.2006]

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina, I.S., Komon-Zelazowska, M., Kredics, L., Hatvani, L., Antal, Z., Belayneh, T., Kubicek, C.P., 2008. Alternative reproductive strategies of Hypocrea orientalis and genetically close but clonal Trichoderma longibrachiatum, both capable of causing invasive mycoses of humans. Microbiology, 154(Pt 11):3447–3459. [doi:10.1099/mic.0.2008/021196-0]

    Article  CAS  PubMed  Google Scholar 

  • d’Enfert, C., Bonini, B.M., Zapella, P.D., Fontaine, T., da Silva, A.M., Terenzi, H.F., 1999. Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol. Microbiol., 32(3):471–483. [doi:10.1046/j.1365-2958.1999.01327.x]

    Article  PubMed  Google Scholar 

  • Farkaš, V., Labudová, I., Bauer, Š., Ferenczy, L., 1981. Preparation of mutants of Trichoderma viride with increased production of cellulase. Folia Microbiol., 26(2):129–132. [doi:10.1007/BF02927368]

    Article  Google Scholar 

  • Felenbok, B., Flipphi, M., Nikolaev, I., 2001. Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. Prog. Nucleic Acid Res. Mol. Biol., 69:149–204. [doi:10.1016/S0079-6603(01)69047-0]

    Article  CAS  PubMed  Google Scholar 

  • Fodor, S.A., Rava, R.P., Huang, X.C., Pease, A.C., Holmes, C.P., Adams, C.L., 1993. Multiplexed biochemical assays with biological chips. Nature, 364(6437):555–556. [doi:10.1038/364555a0]

    Article  CAS  PubMed  Google Scholar 

  • Franzusoff, A., Cirillo, V.P., 1982. Uptake and phosphorylation of 2-deoxy-D-glucose by wild type and single-kinase strains of Saccharomyces cerevisiae. Biochim. Biophys. Acta, 688(2):295–304. [doi:10.1016/0005-2736(82)90340-6]

    Article  CAS  PubMed  Google Scholar 

  • Friedl, M.A., Kubicek, C.P., Druzhinina, I.S., 2008a. Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis. Appl. Environ. Microbiol., 74(1):245–250. [doi:10.1128/AEM.02068-07]

    Article  CAS  PubMed  Google Scholar 

  • Friedl, M.A., Schmoll, M., Kubicek, C.P., Druzhinina, I.S., 2008b. Photostimulation of Hypocrea atroviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidativestress. Microbiology, 154(Pt 4):1229–1241.

    Article  CAS  PubMed  Google Scholar 

  • Gardiner, D.M., Kazan, K., Manners, J.M., 2009. Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet. Biol., 46(8):604–613. [doi:10.1016/j.fgb.2009.04.004]

    Article  CAS  PubMed  Google Scholar 

  • Gu, M.B., Mitchell, R.J., Kim, B.C., 2004. Whole-cell-based biosensors for environmental biomonitoring and application. Adv. Biochem. Eng. Biotechnol., 87:269–305.

    CAS  PubMed  Google Scholar 

  • Guarro, J., Antolin-Ayala, M.I., Gene, J., Gutierrez-Calzada, J., Nieves-Diez, C., Ortoneda, M., 1999. Fatal case of Trichoderma harzianum infection in a renal transplant recipient. J. Clin. Microbiol., 37(11):3751–3755.

    CAS  PubMed  Google Scholar 

  • Hamer, L., Adachi, K., Montenegro-Chamorro, M.V., Tanzer, M.M., Mahanty, S.K., Darveaux, B.A., Lampe, D.J., Slater, T.M., Ramamurthy, L., DeZwaan, T.M., et al., 2001. Gene discovery and gene function assignment in filamentous fungi. Proc. Natl. Acad. Sci. USA, 98(9):5110–5115. [doi:10.1073/pnas.091094198]

    Article  CAS  PubMed  Google Scholar 

  • Hennequin, C., Chouaki, T., Pichon, J.C., Strunski, V., Raccurt, C., 2000. Otitis externa due to Trichoderma longibrachiatum. Eur. J. Clin. Microbiol. Infect. Dis., 19(8):641–642. [doi:10.1007/s100960000326]

    Article  CAS  PubMed  Google Scholar 

  • Hoyos-Carvajal, L., Orduz, S., Bissett, J., 2009. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet. Biol., 46(9):615–631. [doi:10.1016/j.fgb.2009.04.006]

    Article  CAS  PubMed  Google Scholar 

  • Hynes, M.J., 1975. Studies on the role of the areA gene in the regulation of nitrogen catabolism in Aspergillus nidulans. Aust. J. Biol. Sci., 28(3):301–313.

    CAS  PubMed  Google Scholar 

  • Ilmén, M., Thrane, C., Penttilä, M., 1996. The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol. Gen. Genet., 251(4):451–460. [doi:10.1007/s004380050189]

    PubMed  Google Scholar 

  • Jekosch, K., Kück, U., 2000. Glucose dependent transcriptional expression of the cre1 gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production. Curr. Genet., 37(6):388–395. [doi:10.1007/s002940000121]

    Article  CAS  PubMed  Google Scholar 

  • Kahmann, R., Basse, C., 2001. Fungal gene expression during pathogenesis-related development and host plant colonization. Curr. Opin. Microbiol., 4(4):374–380. [doi:10.1016/S1369-5274(00)00220-4]

    Article  CAS  PubMed  Google Scholar 

  • Keppler, O.T., Horstkorte, R., Pawlita, M., Schmidt, C., Reutter, W., 2001. Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology, 11(2):11R–18R. [doi:10.1093/glycob/11.2.11R]

    Article  CAS  PubMed  Google Scholar 

  • Kim, D.J., Baek, J.M., Uribe, P., Kenerley, C.M., Cook, D.R., 2002. Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Curr. Genet., 40(6):374–384. [doi:10.1007/s00294-001-0267-6]

    Article  CAS  PubMed  Google Scholar 

  • Komon-Zelazowska, M., Bissett, J., Zafari, D., Hatvani, L., Manczinger, L., Woo, S., Lorito, M., Kredics, L., Kubicek, C.P., Druzhinina, I.S., 2007. Genetically closely related but phenotypically divergent Trichoderma species cause world-wide green mould disease in oyster mushroom farms. Appl. Environ. Microbiol., 73(22):7415–7426. [doi:10.1128/AEM.01059-07]

    Article  CAS  PubMed  Google Scholar 

  • Kowal, P., Wang, P.G., 2002. UDP-GlcNAc C4 epimerase involved in the biosynthesis of 2-acetamino-2-deoxy-L-altruronic acid in the O-antigen repeating units of Plesiomonas shigelloides O17. Biochemistry, 41(51):15410–15414. [doi:10.1021/bi026384i]

    Article  CAS  PubMed  Google Scholar 

  • Kraus, G., Druzhinina, I., Bissett, J., Prillinger, H.J., Szakacs, G., Koptchinski, A., Gams, W., Kubicek, C.P., 2004. Trichoderma brevicompactum sp. nov. Mycologia, 96(5):1059–1073. [doi:10.2307/3762089]

    Article  Google Scholar 

  • Kubicek, C.P., 1987. Involvement of a conidial endoglucanase and a plasma-membrane bound β-glucosidase in the induction of endoglucanase synthesis by cellulose in Trichoderma reesei. J. Gen. Microbiol., 133(6):1481–1487.

    CAS  PubMed  Google Scholar 

  • Kubicek, C.P., Bissett, J., Kullnig-Gradinger, C.M., Druzhinina, I.S., Szakacs, G., 2003. Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet. Biol., 38(3):310–317. [doi:10.1016/S1087-1845(02)00583-2]

    Article  CAS  PubMed  Google Scholar 

  • Kudla, B., Caddick, M.X., Langdon, T., Martinez-Rossi, N.M., Bennett, C.F., Sibley, S., Davies, R.W., Arst, H.N.Jr., 1990. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J., 9(5):1355–1364.

    CAS  PubMed  Google Scholar 

  • Kutlesa, N.J., Caveney, S., 2001. Insecticidal activity of glufosinate through glutamine depletion in a caterpillar. Pest Manage. Sci., 57(1):25–32. [doi:10.1002/1526-4998(200101)57:1〈25::AID-PS272〉3.0.CO;2-I]

    Article  CAS  Google Scholar 

  • le Crom, S., Schackwitz, W., Pennacchio, L., Magnuson, J.K., Culley, D.E., Collett, J.R., Martin, J.R., Druzhinina, I.S., Mathis, H., Monot, F., et al., 2009. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. PNAS, 106(38):16151–16156. [doi:10.1073/pnas.0905848106]

    Article  PubMed  Google Scholar 

  • Mach, R.L., Peterbauer, C.K., Payer, K., Jaksits, S., Woo, S.L., Zeilinger, S., Kullnig, C.M., Lorito, M., Kubicek, C.P., 1999. Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl. Environ. Microbiol., 65(5):1858–1863.

    CAS  PubMed  Google Scholar 

  • March, J.C., Rao, G., Bentley, W.E., 2003. Biotechnological applications of green fluorescent protein. Appl. Microbiol. Biotechnol., 62(4):303–315. [doi:10.1007/s00253-003-1339-y]

    Article  CAS  PubMed  Google Scholar 

  • Marzluf, G.A., 1997. Genetic regulation of nitrogen metabolism in the fungi. Microbiol. Mol. Biol. Rev., 61(1):17–32.

    CAS  PubMed  Google Scholar 

  • Montenecourt, B.S., Eveleigh, D.E., 1979. Selective Screening Methods for the Isolation of High Yielding Cellulase Mutants of Trichoderma reesei. In: Brown, R.D.Jr., Jurasek, L. (Eds.), Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis. Advances in Chemistry, Vol. 181. American Chemical Society, p.289–301. [doi:10.1021/ba-1979-0181.ch014]

  • Nagy, V., Seidl, V., Szakacs, G., Komoń-Zelazowska, M., Kubicek, C.P., Druzhinina, I.S., 2007. Application of DNA bar codes for screening of industrially important fungi: the haplotype of Trichoderma harzianum sensu stricto indicates superior chitinase formation. Appl. Environ. Microbiol., 73(21):7048–7058. [doi:10.1128/AEM.00995-07]

    Article  CAS  PubMed  Google Scholar 

  • Nogawa, M., Goto, M., Okada, H., Morikawa, Y., 2001. L-sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei. Curr. Genet., 38(6):329–334. [doi:10.1007/s002940000165]

    Article  CAS  PubMed  Google Scholar 

  • OBrian, G.R., Fakhoury, A.M., Payne, G.A., 2003. Identification of genes differentially expressed during aflatoxin biosynthesis in Aspergillus flavus and Aspergillus parasiticus. Fungal Genet. Biol., 39(2):118–127. [doi:10.1016/S1087-1845(03)00014-8]

    Article  CAS  PubMed  Google Scholar 

  • O’Farrell, P.H., 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem., 250(10):4007–4021.

    PubMed  Google Scholar 

  • Pall, M.L., 1993. The use of ignite (Basta; glufosinate; phosphinothricin) to select transformants of bar-containing plasmids in Neurospora crassa. Fungal Genet. Newslett., 40:58.

    Google Scholar 

  • Piwnica-Worms, D., Schuster, D.P., Garbow, J.R., 2004. Molecular imaging of host-pathogen interactions in intact small animals. Cell. Microbiol., 6(4):319–331. [doi:10.1111/j.1462-5822.2004.00379.x]

    Article  CAS  PubMed  Google Scholar 

  • Platt, A., Langdon, T., Arst, H.N.Jr., Kirk, D., Tollervey, D., Mates Sanchez, J.M., Caddick, M.X., 1996. Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3 untranslated region of its mRNA. EMBO J., 15(11):2791–2801.

    CAS  PubMed  Google Scholar 

  • Ragnaud, J.M., Marceau, C., Roche-Bezian, M.C., Wone, C., 1984. Infection peritoneale a Trichoderma koningii sur dialyse peritoneale continue ambulatoire. Med. Maladies Infect., 14(7–8):402–405. [doi:10.1016/S0399-077X(84)80067-0]

    Article  Google Scholar 

  • Randez-Gil, F., Prieto, J.A., Sanz, P., 1995. The expression of a specific 2-deoxyglucose-6P phosphatase prevents catabolite repression mediated by 2-deoxyglucose in yeast. Curr. Genet., 28(2):101–107. [doi:10.1007/BF00315774]

    Article  CAS  PubMed  Google Scholar 

  • Ravagnani, A., Gorfinkiel, L., Langdon, T., Diallinas, G., Adjadj, E., Demais, S., Gorton, D., Arst, H.N.Jr., Scazzocchio, C., 1997. Subtle hydrophobic interactions between the seventh residue of the zinc finger loop and the first base of an HGATAR sequence determine promoter-specific recognition by the Aspergillus nidulans GATA factor AreA. EMBO J., 16(13):3974–3986. [doi:10.1093/emboj/16.13.3974]

    Article  CAS  PubMed  Google Scholar 

  • Rieger, K.J., Kaniak, A., Coppee, J.Y., Aljinovic, G., Baudin-Baillieu, A., Orlowska, G., Gromadka, R., Groudinsky, O., di Rago, J.P., Slonimski, P.P., 1997. Large-scale phenotypic analysis-the pilot project on yeast chromosome III. Yeast, 13(16):1547–1562. [doi:10.1002/(SICI)1097-0061(199712)13:16〈1547::AID-YEA230〉3.3. CO;2-P]

    Article  CAS  PubMed  Google Scholar 

  • Rieger, K.J., El-Alama, M., Stein, G., Bradshaw, C., Slonimski, P.P., Maundrell, K., 1999. Chemotyping of yeast mutants using robotics. Yeast, 15(10B):973–986. [doi:10.1002/(SICI)1097-0061(199907)15:10B〈973::AID-YEA402〉3.0. CO;2-L]

    Article  CAS  PubMed  Google Scholar 

  • Ross-Macdonald, P., Coelho, P.S.R., Roemer, T., Agarwal, S., Kumar, A., Jansen, R., Cheung, K.H., Sheehan, A., Symoniatis, D., Umansky, L., et al., 1999. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature, 402(6760):413–418. [doi:10.1038/46558]

    Article  CAS  PubMed  Google Scholar 

  • Sampathkumar, P., Paya, C.V., 2001. Fusarium infection after solid-organ transplantation. Clin. Infect. Dis., 32(8):1237–1240. [doi:10.1086/319753]

    Article  CAS  PubMed  Google Scholar 

  • Schauer, R., 2000. Achievements and challenges of sialic acid research. Glycoconj. J., 17(7–9):485–499. [doi:10.1023/A:1011062223612]

    Article  CAS  PubMed  Google Scholar 

  • Schmoll, M., Zeilinger, S., Mach, R.L., Kubicek, C.P., 2004. Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genet. Biol., 41(9):877–887. [doi:10.1016/j.fgb.2004.06.002]

    Article  CAS  PubMed  Google Scholar 

  • Schuster, A., Kubicek, C.P., Friedl, M.A., Druzhinina, I.S., Schmoll, M., 2007. Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process. BMC Genomics, 8(1):449. [doi:10.1186/1471-2164-8-449]

    Article  PubMed  Google Scholar 

  • Seiboth, B., Hartl, L., Pail, M., Kubicek, C.P., 2003. D-xylose metabolism in Hypocrea jecorina: loss of the xylitol dehydrogenase step can be partially compensated for by lad1-encoded L-arabinitol-4-dehydrogenase. Eukaryot. Cell, 2(5):867–875. [doi:10.1128/EC.2.5.867-875.2003]

    Article  CAS  PubMed  Google Scholar 

  • Seiboth, B., Gamauf, C., Pail, M., Hartl, L., Kubicek, C.P., 2007. The D-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and D-galactose catabolism and necessary for β-galactosidase and cellulase induction by lactose. Mol. Microbiol., 66(4):890–900. [doi:10.1111/j.1365-2958.2007.05953.x]

    Article  CAS  PubMed  Google Scholar 

  • Seidl, V., Huemer, B., Seiboth, B., Kubicek, C.P., 2005. A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J., 272(22):5923–5939. [doi:10.1111/j.1742-4658.2005.04994.x]

    Article  CAS  PubMed  Google Scholar 

  • Seidl, V., Druzhinina, I.S., Kubicek, C.P., 2006. A screening system for carbon sources enhancing β-N-acetylglucosaminidase formation in Hypocrea atroviridis (Trichoderma atroviride). Microbiology, 152(Pt 7):2003–2012. [doi:10.1099/mic.0.28897-0]

    Article  CAS  PubMed  Google Scholar 

  • Seidl, V., Gamauf, C., Druzhinina, I.S., Seiboth, B., Hartl, L., Kubicek, C.P., 2008. The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics, 9(1):327. [doi:10.1186/1471-2164-9-327]

    Article  PubMed  Google Scholar 

  • Sims, A.H., Gent, M.E., Robson, G.D., Dunn-Coleman, N.S., Oliver, S.G., 2004. Combining transcriptome data with genomic and cDNA sequence alignments to make confident functional assignments for Aspergillus nidulans genes. Mycol. Res., 108(Pt 8):853–857. [doi:10.1017/S095375620400067X]

    Article  CAS  PubMed  Google Scholar 

  • Singh, M.P., 2009. Application of Biolog FF MicroPlate for substrate utilization and metabolite profiling of closely related fungi. J. Microbiol. Methods, 77(1):102–108. [doi:10.1016/j.mimet.2009.01.014]

    Article  CAS  PubMed  Google Scholar 

  • Strauss, J., Mach, R.L., Zeilinger, S., Hartler, G., Stöffler, G., Wolschek, M., Kubicek, C.P., 1995. Cre1, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett., 376(1–2):103–107. [doi:10.1016/0014-5793(95)01255-5]

    Article  CAS  PubMed  Google Scholar 

  • Sweigard, J.A., Carroll, A.M., Valent, B., 1999. Restriction Enzyme-mediated Integration in the Rice Blast Fungus. In: Septoria on Cereals: A Study in Pathosystems. IACR 15th International Symposium. Long Ashton Research Station, Bristol, p.192–198.

    Google Scholar 

  • Tanis, B.C., van der Pijl, H., van Ogtrop, M.L., Kibbelaar, R.E., Chang, P.C., 1995. Fatal fungal peritonitis by Trichoderma longibrachiatum complicating peritoneal dialysis. Nephrol. Dial. Transplant., 10(1):114–116.

    CAS  PubMed  Google Scholar 

  • Tanzer, M.M., Arst, H.N., Skalchunes, A.R., Coffin, M., Darveaux, B.A., Heiniger, R.W., Shuster, J.R., 2003. Global nutritional profiling for mutant and chemical mode-of-action analysis in filamentous fungi. Funct. Integr. Genomics, 3(4):160–170. [doi:10.1007/s10142-003-0089-3]

    Article  CAS  PubMed  Google Scholar 

  • Vitale, R.G., Afeltra, J., Dannaoui, E., 2005. Antifungal combinations. Methods Mol. Med., 118:143–152.

    CAS  PubMed  Google Scholar 

  • Wilson, R.A., Arst, H.N.Jr., 1998. Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the streetwise GATA family of transcription factors. Microbiol. Mol. Biol. Rev., 62(3):586–596.

    CAS  PubMed  Google Scholar 

  • Yeo, S.F., Wong, B., 2002. Current status of nonculture methods for diagnosis of invasive fungal infections. Clin. Microbiol. Rev., 15(3):465–484. [doi:10.1128/CMR.15.3.465-484.2002]

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina S. Druzhinina.

Additional information

Project (No. FWF P-P17859-B06) supported by the Austrian Science Foundation

Introducing editorial board member: Irina S. Druzhinina, the corresponding author of this invited review, is an editorial board member of Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology). Her study is focused on phylogeny and molecular ecology of Hypocreales fungi and on the development of bioinformatic tools for molecular identification of microbes. In the other line of research she is interested in metabolomics of filamentous fungi applying Phenotype MicroArray techniques. In 2001, she gained the doctorate of natural sciences of University of Vienna (Austria). Shortly after, she founded a research group on fungal evolution and functional biodiversity in Vienna University of Technology (Austria) and obtained a position of Assistant Professor in Department of Applied Biochemistry and Gene Technology.

Lea Atanasova, the first author of this invited review, studied biology and ecology at the University of Ljubljana (Slovenia) and has graduated from the University Vienna (Austria). She was awarded for her master thesis by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management as well as by Ecological Society of Germany, Austria and Switzerland. Soon after graduation, she joined the Irina S. Druzhinina’s research group of fungal biodiversity and evolution in Vienna University of Technology (Austria) and started to work on her PhD thesis dedicated to the molecular ecology of soil mycobiota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atanasova, L., Druzhinina, I.S. Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi. J. Zhejiang Univ. Sci. B 11, 151–168 (2010). https://doi.org/10.1631/jzus.B1000007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1000007

Key words

CLC number

Navigation