Skip to main content
Log in

Epigallocatechin-3-gallate affects the growth of LNCaP cells via membrane fluidity and distribution of cellular zinc

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

To evaluate effects of epigallocatechin-3-gallate (EGCG) on the viability, membrane properties, and zinc distribution, with and without the presence of Zn2+, in human prostate carcinoma LNCaP cells

Methods

We examined changes in cellular morphology and membrane fluidity of LNCaP cells, distribution of cellular zinc, and the incorporated portion of EGCG after treatments with EGCG, Zn2+, and EGCG+Zn2+.

Results

We observed an alteration in cellular morphology and a decrease in membrane fluidity of LNCaP cells after treatment with EGCG or Zn2+. The proportion of EGCG incorporated into liposomes treated with the mixture of EGCG and Zn2+ at the ratio of 1:1 was 90.57%, which was significantly higher than that treated with EGCG alone (30.33%). Electron spin resonance (ESR) studies and determination of fatty acids showed that the effects of EGCG on the membrane fluidity of LNCaP were decreased by Zn2+. EGCG accelerated the accumulation of zinc in the mitochondria and cytosol as observed by atomic absorption spectrometer.

Conclusion

These results show that EGCG interacted with cell membrane, decreased the membrane fluidity of LNCaP cells, and accelerated zinc accumulation in the mitochondria and cytosol, which could be the mechanism by which EGCG inhibits proliferation of LNCaP cells. In addition, high concentrations of Zn2+ could attenuate the actions elicited by EGCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, N., Feyes, D.K., Nieminen, A.L., Agarwal, R., Mukhtar, H., 1997. Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J. Natl. Cancer Inst., 89(24): 1881–1886. [doi:10.1093/jnci/89.24.1881]

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, N., Gupta, S., Mukhtar, H., 2000. Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells. Arch. Biochem. Biophys., 376(2):338–346. [doi:10.1006/abbi.2000.1742]

    Article  PubMed  CAS  Google Scholar 

  • Azam, S., Hadi, N., Khan, N.U., Hadi, S.M., 2004. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties. Toxicol. in Vitro, 18(5):555–561. [doi:10.1016/j.tiv.2003.12.012]

    Article  PubMed  CAS  Google Scholar 

  • Balint, E., Grimley, P.M., Gan, Y., Zoon, K.C., Aszalos, A., 2005. Plasma membrane biophysical properties linked to the antiproliferative effect of interferon-alpha. Acta Microbiol. Immunol. Hung., 52(3–4):407–432. [doi:10.1556/AMicr.52.2005.3-4.12]

    Article  PubMed  CAS  Google Scholar 

  • Bettuzzi, S., Brausi, M., Rizzi, F., Castagnetti, G., Peracchia, G., Corti, A., 2006. Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res., 66(2):1234–1240. [doi:10.1158/0008-5472.CAN-05-1145]

    Article  PubMed  CAS  Google Scholar 

  • Bishop, G.M., Dringen, R., Robinson, S.R., 2007. Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes. Free Radic. Biol. Med., 42(8):1222–1230. [doi:10.1016/j.freeradbiomed.2007.01.022]

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Yu, H., Shen, S., Yin, J., 2007. Role of Zn2+ in epigallocatechin gallate affecting the growth of PC-3 cells. J. Trace Elem. Med. Biol., 21(2):125–131. [doi:10.1016/j.jtemb.2006.12.007]

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.M., Wang, M.K., Huang, P.M., 2006. Catechin transformation as influenced by aluminum. J. Agric. Food Chem., 54(1):212–218. [doi:10.1021/jf051926z]

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z.P., Schell, J.B., Ho, C.T., Chen, K.Y., 1998. Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett., 129(2):173–179. [doi:10.1016/S0304-3835(98)00108-6]

    Article  PubMed  CAS  Google Scholar 

  • Chung, L.Y., Cheung, T.C., Kong, S.K., Fung, K.P., Choy, Y.M., Chan, Z.Y., Kwok, T.T., 2001. Induction of apoptosis by green tea catechins in human prostate cancer DU145 cells. Life Sci., 68(10):1207–1214. [doi:10.1016/S0024-3205(00)01020-1]

    Article  PubMed  CAS  Google Scholar 

  • Cooper, R.A., 1977. Abnormalities of cell-membrane fluidity in the pathogenesis of disease. N. Engl. J. Med., 297(7):371–377.

    Article  PubMed  CAS  Google Scholar 

  • Costello, L.C., Franklin, R.B., Feng, P., 2005. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion, 5(3):143–153. [doi:10.1016/j.mito.2005.02.001]

    Article  PubMed  CAS  Google Scholar 

  • de Gómez Dumm, N.T., Giammona, A.M., Touceda, L.A., Raimondi, C., 2001. Lipid abnormalities in chronic renal failure patients undergoing hemodialysis. Medicina (B Aires), 61(2):142–146.

    Google Scholar 

  • Esparza, I., Salinas, I., Santamara, C., Garcia-Mina, J.M., Fernandez, J.M., 2005. Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Anal. Chim. Acta, 543(1–2):267–274. [doi:10.1016/j.aca.2005.04.029]

    Article  CAS  Google Scholar 

  • Feng, P., Liang, J.Y., Li, T.L., Guan, Z.X., Zou, J., Franklin, R., Costello, L.C., 2000. Zinc induces mitochondria apoptogenesis in prostate cells. Mol. Urol., 4(1):31–36.

    PubMed  CAS  Google Scholar 

  • Feng, P., Li, T.L., Guan, Z.X., Franklin, R.B., Costello, L.C., 2002. Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate, 52(4):311–318. [doi:10.1002/pros.10128]

    Article  PubMed  CAS  Google Scholar 

  • Feng, P., Li, T.L., Guan, Z.X., Franklin, R.B., Costello, L.C., 2003. Effect of zinc on prostatic tumorigenicity in nude mice. Ann. N. Y. Acad. Sci., 1010(1–2):316–320. [doi:10.1196/annals.1299.056]

    Article  PubMed  CAS  Google Scholar 

  • Franklin, R.B., Costello, L.C., 2007. Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch. Biochem. Biophys., 463(2):211–217. [doi:10.1016/j.abb.2007.02.033]

    Article  PubMed  CAS  Google Scholar 

  • Fujimura, Y., Yamada, K., Tachibana, H., 2005. A lipid raft-associated 67 kDa laminin receptor mediates suppressive effect of epigallocatechin-3-O-gallate on FcepsilonRI expression. Biochem. Biophys. Res. Commun., 336(2):674–681. [doi:10.1016/j.bbrc.2005.08.146]

    Article  PubMed  CAS  Google Scholar 

  • Furukawa, A., Oikawa, S., Murata, M., Hiraku, Y., Kawanishi, S., 2003. (−)-Epigallocatechin gallate causes oxidative damage to isolated and cellular DNA. Biochem. Pharmacol., 66(9):1769–1778. [doi:10.1016/S0006-2952(03)00541-0]

    Article  PubMed  CAS  Google Scholar 

  • Gallus, S., Foschi, R., Negri, E., Talamini, R., Franceschi, S., Montella, M., Ramazzotti, V., Tavani, A., Dal Maso, L., La Vecchia, C., 2007. Dietary zinc and prostate cancer risk: a case-control study from Italy. Eur. Urol., 52(4):1052–1056. [doi:10.1016/j.eururo.2007.01.094]

    Article  PubMed  CAS  Google Scholar 

  • Gupta, S., Ahmad, N., Nieminen, A.L., Mukhtar, H., 2000. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (−)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells. Toxicol. Appl. Pharmacol., 164(1):82–90. [doi:10.1006/taap.1999.8885]

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, T., Kumazawa, S., Nanjo, F., Hara, Y., Nakayama, T., 1999. Interaction of tea catechins with lipid bilayers investigated with liposome systems. Biosci. Biotechnol. Biochem., 63(12):2252–2255. [doi:10.1271/bbb.63.2252]

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa, F., Ishizu, Y., Hoshino, N., Yamaji, A., Ando, T., Kimura, T., 2004. Prooxidative activities of tea catechins in the presence of Cu2+. Biosci. Biotechnol. Biochem., 68(9):1825–1830. [doi:10.1271/bbb.68.1825]

    Article  PubMed  CAS  Google Scholar 

  • Kagaya, N., Kawase, M., Maeda, H., Tagawa, Y., Nagashima, H., Ohmori, H., Yagi, K., 2002. Enhancing effect of zinc on hepatoprotectivity of epigallocatechin gallate in isolated rat hepatocytes. Biol. Pharm. Bull., 25(9):1156–1160. [doi:10.1248/bpb.25.1156]

    Article  PubMed  CAS  Google Scholar 

  • Kajiya, K., Kumazawa, S., Nakayama, T., 2001. Steric effects on interaction of tea catechins with lipid bilayers. Biosci. Biotechnol. Biochem., 65(12):2638–2643. [doi:10.1271/bbb.65.2638]

    Article  PubMed  CAS  Google Scholar 

  • Kampa, M., Papakonstanti, E.A., Hatzoglou, A., Stathopoulos, E.N., Stournaras, C., Castanas, E., 2002. The human prostate cancer cell line LNCaP bears functional membrane testosterone receptors that increase PSA secretion and modify actin cytoskeleton. FASEB J., 16(11):1429–1431.

    PubMed  CAS  Google Scholar 

  • Kampa, M., Nifli, A.P., Charalampopoulos, I., Alexaki, V.I., Theodoropoulos, P.A., Stathopoulos, E.N., Gravanis, A., Castanas, E., 2005. Opposing effects of estradiol- and testosterone-membrane binding sites on T47D breast cancer cell apoptosis. Exp. Cell Res., 307(1):41–51. [doi:10.1016/j.yexcr.2005.02.027]

    Article  PubMed  CAS  Google Scholar 

  • Kanadzu, M., Lu, Y., Morimoto, K., 2006. Dual function of (−)-epigallocatechin gallate (EGCG) in healthy human lymphocytes. Cancer Lett., 241(2):250–255. [doi:10.1016/j.canlet.2005.10.021]

    Article  PubMed  CAS  Google Scholar 

  • Knapp, D.R., 1979. Handbook of Analytical Derivatization Reactions. Wiley Publishers, New York, USA, p.164.

    Google Scholar 

  • Liang, J.Y., Liu, Y.Y., Zou, J., Franklin, R.B., Costello, L.C., Feng, P., 1999. Inhibitory effect of zinc on human prostatic carcinoma cell growth. Prostate, 40(3):200–207. [doi:10.1002/(SICI)1097-0045(19990801)40:3〈200::AID-PROS8〉3.3.CO;2-V]

    Article  PubMed  CAS  Google Scholar 

  • Liao, S., Umekita, Y., Guo, J., Kokontis, J.M., Hiipakka, R.A., 1995. Growth inhibition and regression of human prostate and breast tumors in athymic mice by tea epigallocatechin gallate. Cancer Lett., 96(2):239–243. [doi:10.1016/0304-3835(95)03948-V]

    Article  PubMed  CAS  Google Scholar 

  • Navarro, R.E., Santacruz, H., Inoue, M., 2005. Complexation of epigallocatechin gallate (a green tea extract, EGCG) with Mn2+: nuclear spin relaxation by the paramagnetic ion. J. Inorg. Biochem., 99(2):584–588. [doi:10.1016/j.jinorgbio.2004.11.013]

    Article  PubMed  CAS  Google Scholar 

  • Nodera, M., Yanagisawa, H., Wada, O., 2001. Increased apoptosis in a variety of tissues of zinc-deficient rats. Life Sci., 69(14):1639–1649. [doi:10.1016/S0024-3205(01)01252-8]

    Article  PubMed  CAS  Google Scholar 

  • Oikawa, S., Furukawaa, A., Asada, H., Hirakawa, K., Kawanishi, S., 2003. Catechins induce oxidative damage to cellular and isolated DNA through the generation of reactive oxygen species. Free Radic. Res., 37(8):881–890. [doi:10.1080/1071576031000150751]

    Article  PubMed  CAS  Google Scholar 

  • Reznichenko, L., Amit, T., Zheng, H., Avramovich-Tirosh, Y., Youdim, M.B., Weinreb, O., Mandel, S., 2006. Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (−)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer’s disease. J. Neurochem., 97(2):527–536. [doi:10.1111/j.1471-4159.2006.03770.x]

    Article  PubMed  CAS  Google Scholar 

  • Salinas, D.G., De La Fuente, M., Reyes, J.G., 2005. Changes of enzyme activity in lipid signaling pathways related to substrate reordering. Biophys. J., 89(2):885–894. [doi:10.1529/biophysj.104.057307]

    Article  PubMed  CAS  Google Scholar 

  • Singh, K.K., Desouki, M.M., Franklin, R.B., Costello, L.C., 2006. Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues. Mol. Cancer, 5(1):14. [doi:10.1186/1476-4598-5-14]

    Article  PubMed  CAS  Google Scholar 

  • Stathopoulos, E.N., Dambaki, C., Kampa, M., Theodoropoulos, P.A., Anezinis, P., Delakas, D., Delides, G.S., Castanas, E., 2003. Membrane androgen binding sites are preferentially expressed in human prostate carcinoma cells. BMC Clin. Pathol., 3(1):1. [doi:10.1186/1472-6890-3-1]

    Article  PubMed  Google Scholar 

  • Sunshine, C., McNamee, M.G., 1994. Lipid modulation of nicotinic acetylcholine receptor function: the role of membrane lipid composition and fluidity. Biochim. Biophys. Acta, 1191(1):59–64. [doi:10.1016/0005-2736(94)90233-X]

    Article  PubMed  CAS  Google Scholar 

  • Tachibana, H., Koga, K., Fujimura, Y., Yamada, K., 2004. A receptor for green tea polyphenol EGCG. Nat. Struct. Mol. Biol., 11(4):380–381. [doi:10.1083/nsmb743]

    Article  PubMed  CAS  Google Scholar 

  • Teresa, G., Anna, A., Maria, P., Zofia, J., Gerard, B., 2002. Carp erythrocyte lipids as a potential target for the toxic action of zinc ions. Toxicol. Lett., 132(1):57–64. [doi:10.1016/S0378-4274(02)00066-8]

    Article  PubMed  CAS  Google Scholar 

  • Thewke, D., Kramer, M., Sinensky, M.S., 2000. Transcriptional homeostatic control of membrane lipid composition. Biochem. Biophys. Res. Commun., 273(1):1–4. [doi:10.1006/bbrc.2000.2826]

    Article  PubMed  CAS  Google Scholar 

  • Truong-Tran, A.Q., Ho, L.H., Chai, F., Zalewski, P.D., 2000. Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death. J. Nutr., 130(5S):1459S–1466S.

    PubMed  CAS  Google Scholar 

  • Tsui, K.H., Chang, P.L., Juang, H.H., 2006. Zinc blocks gene expression of mitochondrial aconitase in human prostatic carcinoma cells. Int. J. Cancer, 118(3):609–615. [doi:10.1002/ijc.21411]

    Article  PubMed  CAS  Google Scholar 

  • Turk, M., Méjanelle, L., Sentjurc, M., Grimalt, J.O., Gunde-Cimerman, N., Plemenitas, A., 2004. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles, 8(1):53–61. [doi:10.1007/s00792-003-0360-5]

    Article  PubMed  CAS  Google Scholar 

  • Uzzo, R.G., Crispen, P.L., Golovine, K., Makhov, P., Horwitz, E.M., Kolenko, V.M., 2006. Diverse effects of zinc on NF-kappaB and AP-1 transcription factors: implications for prostate cancer progression. Carcinogenesis, 27(10):1980–1990. [doi:10.1093/carcin/bgl034]

    Article  PubMed  CAS  Google Scholar 

  • Vayalil, P.K., Katiyar, S.K., 2004. Treatment of epigallocatechin-3-gallate inhibits matrix metalloproteinases-2 and -9 via inhibition of activation of mitogen-activated protein kinases, c-jun and NF-kappaB in human prostate carcinoma DU-145 cells. Prostate, 59(1):33–42. [doi:10.1002/pros.10352]

    Article  PubMed  CAS  Google Scholar 

  • Yaman, M., Atici, D., Bakirdere, S., Akdeniz, I., 2005. Comparison of trace metal concentrations in malign and benign human prostate. J. Med. Chem., 48(2):630–634. [doi:10.1021/jm0494568]

    Article  PubMed  CAS  Google Scholar 

  • Yu, H.N., Shen, S.R., Xiong, Y.K., 2005. Cytotoxicity of epigallocatechin-3-gallate to LNCaP cells in the presence of Cu2+. J. Zhejiang Univ. Sci. B, 6(2):125–131. [doi:10.1631/jzus.2005.B0125]

    Article  PubMed  CAS  Google Scholar 

  • Yu, H.N., Shen, S.R., Yin, J.J., 2007. Effects of interactions of EGCG and Cd(2+) on the growth of PC-3 cells and their mechanisms. Food Chem. Toxicol., 45(2):244–249. [doi:10.1016/j.fct.2006.08.015]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-rong Shen.

Additional information

Project (No. 30470198) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Jg., Yu, Hn., Sun, Sl. et al. Epigallocatechin-3-gallate affects the growth of LNCaP cells via membrane fluidity and distribution of cellular zinc. J. Zhejiang Univ. Sci. B 10, 411–421 (2009). https://doi.org/10.1631/jzus.B0820400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0820400

Key words

CLC number

Navigation