Skip to main content
Log in

Effect of carbon dioxide concentration on the combustion characteristics of boron agglomerates in oxygen-containing atmospheres

含氧气氛中的二氧化碳浓度对硼团聚体燃烧特性的影响

  • Research Article
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

In ramjet combustion chambers, carbon dioxide (CO2) produced by the combustion of carbonaceous fuel enters the chamber together with boron agglomerates. In order to investigate the effect of CO2 concentration present in an oxygen-containing atmosphere on the combustion characteristics and oxidation mechanisms of boron agglomerates, we used a laser ignition system, an X-ray diffractometer (XRD), and a thermogravimetric-differential scanning calorimetry (TG-DSC) combined thermal analysis system. Single-particle boron was tested in the laser-ignition experiments as the control group. The ignition experiment results showed that with a fixed O2 concentration of 20%, when the particle temperature reaches the melting point of boron, increasing CO2 content causes the combustion process of boron agglomerates to transition from single-particle molten droplet combustion to porous-particle combustion. Furthermore, XRD analysis results indicated that the condensed-phase combustion products (CCPs) of boron particles in a mixed atmosphere of O2 and CO2 contained B4C, which is responsible for the porous structure of the particles. At temperatures below 1200 °C, the addition of CO2 has no obvious promotion effect on boron exothermic reaction. However, in the laser-ignition experiment, when the oxygen concentration was fixed at 20% while the CO2 concentration increased from 0% to 80%, the maximum temperature of boron agglomerates rose from 2434 to 2573 K, the self-sustaining combustion time of single-particle boron decreased from 396 to 169 ms, and the self-sustaining combustion time of boron agglomerates decreased from 198 to 40 ms. This study conclusively showed that adding CO2 to an oxygen-containing atmosphere facilitates boron reaction and consumption pathways, which is beneficial to promoting exothermic reaction of boron agglomerates at relatively high temperatures.

摘要

目的

在冲压发动机燃烧室中, 含碳燃料燃烧产生的CO2与硼团聚体一起进入燃烧室。本文旨在探究在O2浓度固定的情况下, CO2浓度对团聚硼燃烧特性的影响规律, 以深入认识在O2和CO2共存的情况下, 团聚硼的燃烧模式以及硼的反应和能量释放路径。

创新点

1. 直接观测燃烧过程中, 团聚硼的表面形貌的变化过程; 2. 通过凝相燃烧产物分析测试获得团聚硼在O2和CO2共存的气氛中的反应消耗路径。

方法

1. 通过激光点火实验, 直接观察在不同CO2浓度的气氛下, 团聚硼燃烧过程中的表面形貌、颗粒结构和火焰形貌的演变过程(图3~5); 2. 分析得到凝相燃烧产物的表面形貌、元素成分以及晶体结构(图10~12); 3. 通过热重-差示扫描量热法获得在不同CO2浓度的气氛中, 团聚硼的低温氧化过程。

结论

1. 硼团聚体在高温含氧气氛中可与CO2反应生成B4C, 增加硼的反应和消耗途径, 改变了颗粒的物理化学性质和燃烧状态; 2. 在O2浓度固定为20%的气氛中, 当颗粒温度达到硼的熔点时, CO2含量的增加使得硼团聚体的燃烧模式由单颗粒液滴燃烧转变为多孔颗粒燃烧; 3. 当颗粒温度低于B2O3的沸点时, B4C氧化生成的B2O3形成玻璃态液膜覆盖在颗粒表面, 阻碍颗粒进一步燃烧。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 52006240) and the Hunan Provincial Natural Science Foundation of China (Nos. 2020JJ4665 and 2021JJ30775).

Author information

Authors and Affiliations

Authors

Contributions

Lian DUAN designed the research and wrote the first draft of the manuscript. Yunchao FENG and Binbin CHEN processed the corresponding data. Likun MA and Jiarui ZHANG helped to organize the manuscript. Zhixun XIA revised and edited the final version.

Corresponding author

Correspondence to Binbin Chen  (陈斌斌).

Ethics declarations

Lian DUAN, Zhixun XIA, Yunchao FENG, Binbin CHEN, Jiarui ZHANG, and Likun MA declare that they have no conflict of interest.

Additional information

Electronic supplementary materials

Section S1

Electronic supplementary materials

11582_2023_517_MOESM1_ESM.pdf

Effect of carbon dioxide concentration on the combustion characteristics of boron agglomerates in oxygen-containing atmospheres

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, L., Xia, Z., Feng, Y. et al. Effect of carbon dioxide concentration on the combustion characteristics of boron agglomerates in oxygen-containing atmospheres. J. Zhejiang Univ. Sci. A 24, 949–959 (2023). https://doi.org/10.1631/jzus.A2200468

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A2200468

Key words

关键词

Navigation