Skip to main content
Log in

Improving effect of boron carbide on the combustion and thermal oxidation characteristics of amorphous boron

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Boron carbide (B4C) is one of the main products from the primary combustion of boron (B)-based propellants and has a significant influence on the secondary combustion of B. To systematically evaluate its effects on the secondary combustion of B, mixtures of B4C and B in different mass ratios were prepared. To study the ignition temperatures and combustion flames of the samples, a xenon lamp ignition experimental system and a flame shape test system were designed, respectively. A thermogravimetry–differential scanning calorimetry–Fourier transform infrared spectroscopy combined thermal analysis system was used to study the thermal oxidation characteristics and analyze the gaseous products of the samples. The results indicate that B4C reduces the heat absorption at the beginning of the ignition, but subsequently prevents the rapid rise of sample temperature. During the stable combustion stage, the maximum flame length under optical density 10−4 (OD4) filter was 20.4 mm, and the maximum flame length under 580 nm + OD4 filters (represents the combustion of B element) was 16.7 mm. The samples contained a small amount of HBO2 and H3BO3, which led to slight mass loss during the low temperature section of the thermal oxidation process. During the high temperature section, the oxidation of B and B4C caused considerable mass gain. The gaseous products of the thermal oxidation process include CO2, CO, and H2O. In general, the B content of 60% was the most beneficial to decrease the oxidation temperature, increase the combustion intensity, and improve the heat-releasing ability of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Perez JPL, McMahon BW, Schneider S, et al. Exploring the structure of nitrogen-rich ionic liquids and their binding to the surface of oxide-free boron nanoparticles. J Phys Chem C. 2013;117(11):5693–707.

    Article  Google Scholar 

  2. Kuwahara T, Obuchi K, Takahashi K, et al. Mass transfer in the recirculation zone of ducted rocket. In: 44th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit. 2008.

  3. Liu J, Xi J, Yang W, et al. Effect of magnesium on the burning characteristics of boron particles. Acta Astronaut. 2014;96:89–96.

    Article  CAS  Google Scholar 

  4. Liu L, He G, Wang Y, et al. Chemical analysis of primary combustion products of boron-based fuel-rich propellants. RSC Adv. 2015;5:101416–26.

    Article  CAS  Google Scholar 

  5. Yang W, Ao W, Zhou J, et al. Impacts of particle size and pressure on reactivity of boron oxidation. J Propuls Power. 2013;29(5):1207–13.

    Article  CAS  Google Scholar 

  6. Krier H, Burton RL, Spalding MJ, et al. Ignition dynamics of boron particles in a shock tube. J Propuls Power. 1998;14(2):166–72.

    Article  CAS  Google Scholar 

  7. Krier H, Burton RL, Pirman SR, et al. Shock initiation of crystalline boron in oxygen and fluorine compounds. J Propuls Power. 1996;12(4):672–9.

    Article  CAS  Google Scholar 

  8. Ao W, Wang Y, Li H, et al. Effect of initial oxide layer on ignition and combustion of boron powder. Propellants Explos Pyrotech. 2014;39(2):185–91.

    Article  CAS  Google Scholar 

  9. Liang D, Liu J, Xiao J, et al. Energy release properties of amorphous boron and boron-based propellant primary combustion products. Acta Astronaut. 2015;112:182–91.

    Article  CAS  Google Scholar 

  10. Liu L, He G, Wang Y. Thermal reaction characteristics of the boron used in the fuel-rich propellant. J Therm Anal Calorim. 2013;114(3):1057–68.

    Article  CAS  Google Scholar 

  11. Liu L, He G, Wang Y. Effect of oxidizer on the combustion performance of boron-based fuel-rich propellant. J Propuls Power. 2014;30(2):285–9.

    Article  Google Scholar 

  12. Hsieh WH, Peretz A, Kuo KK, et al. Combustion behavior of boron-based BAMO/NMMO fuel-rich solid propellants. J Propuls Power. 1991;7(4):497–504.

    Article  CAS  Google Scholar 

  13. Liu L, He G, Wang Y. Study on the calculation of the combustion products of the boron-based fuel-rich propellant during first combustion stage. Chin J Explos Propellant. 2013;4:46–51.

    CAS  Google Scholar 

  14. Liang D, Liu J, Xiao J, et al. Effect of metal additives on the composition and combustion characteristics of primary combustion products of B-based propellants. J Therm Anal Calorim. 2015;122(1):497–508.

    Article  CAS  Google Scholar 

  15. Zhang W, Zhu H, Fang D. Research in solid fuel-rich propellant. Chin J Explos Propellants. 2002;25(1):25–8.

    Google Scholar 

  16. Trowbridge JC, Breazeal JD. Coating of boron particles. U.S. Patent 4,915,753. 1990-4-10.

  17. Liang D, Liu J, Zhou J, et al. Combustion characteristics and propulsive performance of boron/ammonium perchlorate mixtures in microtubes. J Energ Mater. 2016;34(3):297–317.

    Article  CAS  Google Scholar 

  18. Liu LL, Liu PJ, He GQ. Ignition and combustion characteristics of compound of magnesium and boron. J Therm Anal Calorim. 2015;121(3):1205–12.

    Article  CAS  Google Scholar 

  19. Xi J, Liu J, Wang Y, et al. Effect of metal hydrides on the burning characteristics of boron. Thermochim Acta. 2014;597:58–64.

    Article  CAS  Google Scholar 

  20. Li SC, Williams FA, Takahashi F. An investigation of combustion of boron suspensions. In: Twenty-second symposium (international) on combustion. The Combustion Institute; 1988. p. 1951–60.

  21. Spalding MJ, Krier H, Burton RL. Boron suboxides measured during ignition and combustion of boron in shocked Ar/F/O2 and Ar/N2/O2 mixtures. Combust Flame. 2000;120(1):200–10.

    Article  CAS  Google Scholar 

  22. Yoshida T, Yuasa S. Effect of water vapor on ignition and combustion of boron lumps in an oxygen stream. Proc Combust Inst. 2000;28(2):2735–41.

    Article  CAS  Google Scholar 

  23. Li S, Ji R. Composition analysis of combustion residues of metallized solid propellant. J Propuls Technol. 1996;17(1):83–8.

    CAS  Google Scholar 

  24. Ao W, Yang W, Wang Y, et al. Ignition and combustion of boron particles at one to ten standard atmosphere. J Propuls Power. 2014;30(3):760–4.

    Article  CAS  Google Scholar 

  25. Ao W, Yang W, Wang Y, et al. Study on combustion characteristics and kinetics of boron in different atmosphere. Proc Chin Soc Electr Eng. 2012;32(29):59–65.

    Google Scholar 

  26. Li H, Ao W, Wang Y, et al. Effect of carbon dioxide on the reactivity of the oxidation of boron particles. Propellants Explos Pyrotech. 2014;39(4):617–23.

    Article  CAS  Google Scholar 

  27. Han L, Wang Q, Ma Q, et al. Influence of CaO additives on wheat-straw pyrolysis as determined by TG–FTIR analysis. J Anal Appl Pyrol. 2010;88(2):199–206.

    Article  CAS  Google Scholar 

  28. Liu PJ, Liu LL, He GQ. Effect of solid oxidizers on the thermal oxidation and combustion performance of amorphous boron. J Therm Anal Calorim. 2016;124(3):1587–93.

    Article  CAS  Google Scholar 

  29. Jain A, Anthonysamy S. Oxidation of boron carbide powder. J Therm Anal Calorim. 2015;122(2):1–8.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 51106135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, D., Liu, J., Li, H. et al. Improving effect of boron carbide on the combustion and thermal oxidation characteristics of amorphous boron. J Therm Anal Calorim 128, 1771–1782 (2017). https://doi.org/10.1007/s10973-016-5989-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5989-2

Keywords

Navigation