Skip to main content
Log in

A relaxation scheme for a multi-class Lighthill-Whitham-Richards traffic flow model

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

We present a high-resolution relaxation scheme for a multi-class Lighthill-Whitham-Richards (MCLWR) traffic flow model. This scheme is based on high-order reconstruction for spatial discretization and an implicit-explicit Runge-Kutta method for time integration. The resulting method retains the simplicity of the relaxation schemes. There is no need to involve Riemann solvers and characteristic decomposition. Even the computation of the eigenvalues is not required. This makes the scheme particularly well suited for the MCLWR model in which the analytical expressions of the eigenvalues are difficult to obtain for more than four classes of road users. The numerical results illustrate the effectiveness of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ascher, U.M., Ruuth, S.J., Spiteri, R.J., 1997. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math., 25(2–3):151–167. [doi:10.1016/S0168-9274(97)00056-1]

    Article  MathSciNet  MATH  Google Scholar 

  • Banda, M., Seaïd, M., 2006. Non-oscillatory methods for relaxation approximation of Hamilton-Jacobi equations. Appl. Math. Comput., 183(1):170–1183. [doi:10.1016/j.amc.2006.05.066]

    MathSciNet  MATH  Google Scholar 

  • Banda, M., Seaïd, M., 2007. Relaxation WENO schemes for multidimensional hyperbolic systems of conservation laws. Numer. Methods Part. Diff. Equat., 23(5):1211–1234. [doi:10.1002/num.20218]

    Article  MathSciNet  MATH  Google Scholar 

  • Banda, M.K., Seaïd, M., 2005. Higher-order relaxation schemes for hyperbolic systems of conservation laws. J. Numer. Math., 13(3):171–196. [doi:10.1515/156939505774286102]

    Article  MathSciNet  MATH  Google Scholar 

  • Banda, M.K., Klar, A., Seaïd, M., 2007. A lattice-Boltzmann relaxation scheme for coupled convection-radiation systems. J. Comput. Phys., 226(2):1408–1431. [doi:10.1016/j.jcp.2007.05.030]

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J.Z., Shi, Z.K., 2006. Application of a fourth-order relaxation scheme to hyperbolic systems of conservation laws. Acta Mech. Sin., 22(1):84–92. [doi:10.1007/s10409-005-0079-x]

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J.Z., Shi, Z.K., Hu, Y.M., 2007. Numerical Solution of a Two-class LWR Traffic Flow Model by High-resolution Central-upwind Scheme. Proc. 7th Int. Conf. on Computational Science, p.17–24. [doi:10.1007/978-3-540-72584-8_3]

  • Drake, J.S., Schofer, J.L., May, A.D., 1967. A statistical analysis of speed density hypothesis. Highway Res. Rec., 154:53–87.

    Google Scholar 

  • Jiang, R., Wu, Q.S., Zhu, Z.J., 2002. A new continuum model for traffic flow and numerical tests. Transp. Res. B, 36(5):405–419. [doi:10.1016/S0191-2615(01)00010-8]

    Article  Google Scholar 

  • Jin, S., Xin, Z., 1995. The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math., 48(3):235–276. [doi:10.1002/cpa.3160480303]

    Article  MathSciNet  MATH  Google Scholar 

  • Kurganov, A., Nolle, S., Petrova, G., 2001. Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput., 23(3):707–740. [doi:10.1137/S1064827500373413]

    Article  MathSciNet  MATH  Google Scholar 

  • Lebacque, J.P., 1996. The Godunov Scheme and What It Means for First Order Traffic Flow Models. Proc. 13th Int. Symp. on Transportation and Traffic Theory, p.647–677.

  • LeVeque, R.J., 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK, p.378–388.

    Book  Google Scholar 

  • Levy, D., Puppo, G., Russo, G., 1999. Central WENO schemes for hyperbolic systems of conservation laws. ESAIM Math. Model. Numer. Anal., 33(3):547–571. [doi:10.1051/m2an:1999152]

    Article  MathSciNet  MATH  Google Scholar 

  • Levy, D., Puppo, G., Russo, G., 2000. Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput., 22(2):656–672. [doi:10.1137/S1064827599359461]

    Article  MathSciNet  MATH  Google Scholar 

  • Lighthill, M.J., Whitham, G.B., 1955. On kinematic waves (II): a theory of traffic flow on long crowed roads. Proc. R. Soc. Ser. A, 229(1178):317–345. [doi:10.1098/rspa.1955.0089]

    Article  MathSciNet  MATH  Google Scholar 

  • Ngoduy, D., Liu, R., 2007. Multiclass first-order simulation model to explain non-linear traffic phenomena. Phys. A, 385(2):667–682. [doi:10.1016/j.physa.2007.07.041]

    Article  Google Scholar 

  • Richards, P.I., 1956. Shock waves on the highway. Oper. Res., 4(1):42–51. [doi:10.1287/opre.4.1.42]

    Article  MathSciNet  Google Scholar 

  • Seaïd, M., 2004. Non-oscillatory relaxation methods for the shallow water equations in one and two space dimensions. Int. J. Numer. Methods Fluids, 46(5):457–484. [doi:10.1002/fld.766]

    Article  MathSciNet  MATH  Google Scholar 

  • Shu, C.W., Osher, S., 1988. Effient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 77(2):439–471. [doi:10.1016/0021-9991(88)90177-5]

    Article  MathSciNet  MATH  Google Scholar 

  • Wong, G.C.K., Wong, S.C., 2002. A multi-class traffic flow model: an extension of LWR model with heterogeneous drivers. Transp. Res. A, 36(9):827–841. [doi:10.1016/S0965-8564(01)00042-8]

    Google Scholar 

  • Zhang, H.M., 2001. A finite difference approximation of a non-equilibrium traffic flow model. Transp. Res. B, 35(4):337–365. [doi:10.1016/S0191-2615(99)00054-5]

    Article  Google Scholar 

  • Zhang, H.M., 2002. A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res. B, 36(3):275–290. [doi:10.1016/S0191-2615(00)00050-3]

    Article  Google Scholar 

  • Zhang, M.P., Shu, C.W., Wong, G.C.K., Wong, S.C., 2003. A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model. J. Comput. Phys., 191(2):639–659. [doi:10.1016/S0021-9991(03)00344-9]

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, P., Liu, R.X., Dai, S.Q., 2005. Theoretical analysis and numerical simulation on a two-phase traffic flow LWR model. J. Univ. Sci. Technol. China, 35(1):1–11 (in Chinese).

    MathSciNet  MATH  Google Scholar 

  • Zhang, P., Wong, S.C., Shu, C.W., 2006. A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway. J. Comput. Phys., 212(2):739–756. [doi:10.1016/j.jcp.2005.07.019]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-zhong Chen.

Additional information

Project supported by the Aoxiang Project and the Scientific and Technological Innovation Foundation of Northwestern Polytechnical University, China (No. 2007KJ01011)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Jz., Shi, Zk. & Hu, Ym. A relaxation scheme for a multi-class Lighthill-Whitham-Richards traffic flow model. J. Zhejiang Univ. Sci. A 10, 1835–1844 (2009). https://doi.org/10.1631/jzus.A0820829

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820829

Key words

CLC number

Navigation