Skip to main content

Numerical Resolution of the LWR Method for First Order Traffic Flow Model

  • Conference paper
  • First Online:
Digital Technologies and Applications (ICDTA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 455))

Included in the following conference series:

Abstract

Congestion in Moroccan roads especially in urban areas is increasing and gaining in scale more and more nowadays, it can be induced by roads perforated, absence of traffic signs, behaviors of drivers, overcapacity of roads, illegal parking etc.

Also, disproportional traffic lights cycle in a junction also serves as cause of congestion. One of the most innovative solutions is to build an intelligent transportation system (ITS) to collect data in real time and adjust the cycle time of traffic lights in every road intersection, provide alternative paths and predict when and where congestion will occur. Having a numerical model that give reliable solutions in real time using accurate data is essential. In this perspective, we use the LWR macroscopic model to model traffic flow and we adapt numerical resolution methods of Lax-Friedrichs and Godunov Schemes to test their accuracy and adaptability for traffic situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Strub, I.S., Bayen, A.M.: Weak formulation of boundary conditions for scalar conservation laws: an application to highway traffic modelling. Int. J. Robust Nonlin. Contr. IFAC‐Affiliat. J. 16(16), 733–748 (2006)

    Article  MathSciNet  Google Scholar 

  2. Nikolov, E.: Transfer function representation approach of the LWR macroscopic traffic flow model based on the Green function. In: Proceedings of the 9th WSEAS International Conference on Evolutionary Computing (EC 2008), Sofia, Bulgaria, May 2008 (2008)

    Google Scholar 

  3. Winckelmans, G.: Classification des équations aux dérivées partielles, méthode de caractéristiques pour les cas hyperboliques, Octobre 2007 (2007)

    Google Scholar 

  4. Şentürk, E., Coşkun, S.B., Atay, M.T.: Solution of jamming transition problem using adomian decomposition method. Eng. Comput. 35(5), 1950–1964 (2018)

    Article  Google Scholar 

  5. Lighthill, M., Whitham, G.: On kinematic waves I. Flood movement in long rivers. In: Richards, P.I. (ed.) Proceedings of the Royal Society, London, Shock Waves on the Highway. Operations Research, May 1955, vol. 229A, pp. 281–316 (1956)

    Google Scholar 

  6. Richards, P.I.: Shock waves on the highways. Oper. Res. 4, 42–51 (1956)

    Article  MathSciNet  Google Scholar 

  7. Gerlough, D.L., Huber, M.J., National Research Council (U.S.): Traffic Flow Theory: A Monograph. Transportation Research Board, National Research Council, Washington (1975)

    Google Scholar 

  8. Guelfi, N., Mammar, A.: A formal framework to generate XPDL specifications from UML activity diagrams (2006)

    Google Scholar 

  9. Rascle, M.: An improved macroscopic model of traffic flow: derivation and links with the Lightill-Whitham model. Math. Comp. Model. 35(5–6), 581–590 (2002)

    Article  MathSciNet  Google Scholar 

  10. Lebacque, J.-P., Khoshyaran, M.M.: Modelling vehicular traffic flow on networks using macroscopic models. In: Proceedings of the FVCA II, pp. 551–558 (1999)

    Google Scholar 

  11. Zhang, Y., Chien, C., Iouannou, P.: Traffic density control for automated highway systems, Automatica 33(7), 1273–1285 (1997). PII: S0005-1098/97/00050-2

    Google Scholar 

  12. Chanut, S.: Modélisation dynamique macroscopique de l’écoulement d‟un trafic routier hétérogène poids lourds et véhicules légers, Thèse de doctorat INSA de Lyon, ENTPE/INRETS (2005)

    Google Scholar 

  13. Kachroo, P., Ozbay, K.: Solution to the user equilibrium dynamic traffic routing problem using feedback linearization. Transp. Res. B 32(5), 343–360 (1998). PII:S0191-2615(97)00031-3

    Google Scholar 

  14. Giorgi, F.: Prise en compte des transports en commun de surface dans la modélisation macroscopique de l’écoulement du trafic, Thèse de doctorat, INSA de Lyon, ENTPE/INRETS (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza El Ouenjli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Ouenjli, H., Chafi, A., Alami, S.K. (2022). Numerical Resolution of the LWR Method for First Order Traffic Flow Model. In: Motahhir, S., Bossoufi, B. (eds) Digital Technologies and Applications. ICDTA 2022. Lecture Notes in Networks and Systems, vol 455. Springer, Cham. https://doi.org/10.1007/978-3-031-02447-4_75

Download citation

Publish with us

Policies and ethics