Skip to main content
Log in

Characteristics analysis and parameters optimization for the grating eddy current displacement sensor

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown and Sharpe Tesa S.A., 2001. Magnetoresistive Sensor for High Precision Measurements of Lengths and Angles. US Patent, No. 6191578.

  • Corda, J., Tayie, J.k.A., Slater, P., 1999. Contactless linear position transducer based on reluctance variation. IEE Proc.-Electr. Power Appl., 146(6):585–590. [doi:10.1049/ipepa:19990693]

    Article  Google Scholar 

  • Dinulovic, D., Gatzen, H.H., 2006. Microfabricated inductive micropositioning sensor for measurement of a linear movement. IEEE Sensors J., 6(6):1482–1487. [doi:10.1109/JSEN.2006.884439]

    Article  Google Scholar 

  • Dinulovic, D., Hermann, D., Fluegge, J., Gatzen, H.H., 2006. Development of a linear micro-inductosyn sensor. IEEE Trans. Magn., 42(10):2830–2832. [doi:10.1109/TMAG.2006.879141]

    Article  Google Scholar 

  • Ditchburn, R.J., Burke, S.K., 2005. Planar rectangular spiral coils in eddy-current non-destructive inspection. NDT & E Int., 38(8):690–700. [doi:10.1016/j.ndteint.2005.04.001]

    Article  Google Scholar 

  • Hamasaki, Y., Ide, T., 1995. Fabrication of Multi-Layer Eddy Current Micro Sensors for Non-destructive Inspection of Small Diameter Pipes. Micro Electro Mechanical Systems (MEMS), Proc. IEEE, p.232–237. [doi:10.1109/MEMSYS.1995.472574]

  • Huang, L., Rahman, A., Rolph, W.D., Pare, C., 2001. Electromagnetic finite element analysis for designing high frequency inductive position sensors. IEEE Trans. Magn., 37(5):3702–3705. [doi:10.1109/20.952694]

    Article  Google Scholar 

  • Jagiella, M., Fericean, S., 2002. Miniaturized Inductive Sensors for Industrial Applications. Proc. IEEE Sensors, 2:771–778. [doi:10.1109/ICSENS.2002.1037204]

    Article  Google Scholar 

  • Juillard, J., Barmon, B., Berthiau, G., 2000. Simple analytical three-dimensional eddy-current model. IEEE Trans. Magn., 36(1):258–266. [doi:10.1109/20.822536]

    Article  Google Scholar 

  • Kacprzak, D., Taniguchi, T., Nakamura, K., Yamada, S., Iwahara, M., 2001. Novel eddy current testing sensor for the inspection of printed circuit boards. IEEE Trans. Magn., 37(4):2010–2012. [doi:10.1109/20.951037]

    Article  Google Scholar 

  • Mitutoyo Corporation, 1998. Induced Current Absolute Position Transducer Using a Code-track-type Scale and Read Head. US Patent, No. 5841274.

  • Sydenham, P.H., Taing, V., Mounsey, D.J., Yu, W.X., 1995. Low-cost, precision, flat inductive sensor. Measurement, 15(3):179–188. [doi:10.1016/0263-2241(94)00048-C]

    Article  Google Scholar 

  • Theodoulidis, T.P., Kriezis, E.E., 2002. Impedance evaluation of rectangular coils for eddy current testing of planar media. NDT & E Int., 35(6):407–414. [doi:10.1016/S0963-8695(02)00008-7]

    Article  Google Scholar 

  • Yamada, S., Chomsuwan, K., Fukuda, Y., Iwahara, M., Wakiwaka, H., Shoji, S., 2004. Eddy-current testing probe with spin-valve type GMR sensor for printed circuit board inspection. IEEE Trans. Magn., 40(4):2676–2678. [doi:10.1109/TMAG.2004.829254]

    Article  Google Scholar 

  • Zhao, H., Ma, D.L., Liu, W.W., Yu, P., 2004a. Design of a new inductive grating displacement sensor and application in liquid resistant caliper. J. Shanghai Jiao Tong Univ., 38(8):1382–1384 (in Chinese).

    Google Scholar 

  • Zhao, H., Liu, W.W., Yu, P., Tao, W., 2004b. Summary on water-proof electronic digital caliper. New Technol. & New Process, (12):7–10 (in Chinese).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, Hl., Zhao, H. & Liu, Ww. Characteristics analysis and parameters optimization for the grating eddy current displacement sensor. J. Zhejiang Univ. Sci. A 10, 1029–1037 (2009). https://doi.org/10.1631/jzus.A0820358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820358

Key words

CLC number

Navigation