Skip to main content
Log in

Parameter Optimization and Precision Enhancement of Dual-Coil Eddy Current Sensor

双线圈电涡流传感器参数优化及精度提高方法研究

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

To enhance the measurement precision of eddy current sensor in particular environments such as extreme temperature changes and limited available space in aerospace, we optimized the structural parameters of the traditional dual-coil eddy current sensor probe by electromagnetic field analysis and finite element simulation modeling, and further presented the criteria for determining the optimal coil distance of the dual-coil probe. The simulation results are verified by setting up an experimental platform. For the extreme temperature environment, the displacement measurement error caused by the full range temperature variation of the dual-coil sensor under the optimal distance is less than 21.0% of that of the single-coil sensor. On this basis, we analyzed and verified the thermal stability of the structurally optimized dual-coil eddy current sensor. After temperature compensation, the displacement measurement accuracy can reach 14.9 times more accurate than that of the single-coil sensor. The method proposed in this paper can provide a design reference for the structural optimization of the axial dual-coil eddy current sensor probe.

摘要

为了提高涡流传感器在极端温度变化和航空航天有限空间等特殊环境下的测量精度, 通过电磁场分析和有限元仿真建模, 对传统双线圈涡流传感器探头的结构参数进行了优化, 并进一步提出了确定双线圈探头最优线圈距离的准则. 通过搭建实验平台对仿真结果进行了验证. 在极端温度环境下, 双线圈传感器在最佳距离下的全范围温度变化引起的位移测量误差小于单线圈传感器的21.0%. 在此基础上, 对结构优化后的双线圈涡流传感器的热稳定性进行了分析和验证. 经过温度补偿后, 双线圈涡流传感器位移测量精度要比单线圈传感器的精确14.9倍. 提出的方法可为轴向双线圈涡流传感器探头的结构优化提供设计参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NABAVI M R, NIHTIANOV S N. Design strategies for eddy-current displacement sensor systems: Review and recommendations [J]. IEEE Sensors Journal, 2012, 12(12): 3346–3355.

    Article  Google Scholar 

  2. SOPHIAN A, TIAN G, FAN M. Pulsed eddy current non-destructive testing and evaluation: A review [J]. Chinese Journal of Mechanical Engineering, 2017, 30(3): 500–514.

    Article  Google Scholar 

  3. WU J, WEN B, ZHOU Y, et al. Eddy current sensor system for blade tip clearance measurement based on a speed adjustment model [J]. Sensors, 2019, 19(4): 761.

    Article  Google Scholar 

  4. ZHANG D, YU Y, LAI C, et al. Thickness measurement of multi-layer conductive coatings using multi-frequency eddy current techniques [J]. Nondestructive Testing and Evaluation, 2016, 31(3): 191–208.

    Article  Google Scholar 

  5. SOPHIAN A, TIAN G Y, TAYLOR D, et al. Design of a pulsed eddy current sensor for detection of defects in aircraft lap-joints [J]. Sensors and Actuators A: Physical, 2002, 101(1/2): 92–98.

    Article  Google Scholar 

  6. TSUTOMU M, SHO G, KENTA D, et al. Method for identifying type of eddy-current displacement sensor [J]. IEEE Transactions on Magnetics, 2011, 47(10): 3554–3557.

    Article  Google Scholar 

  7. ZHOU D, WANG J, WU J, et al. Investigation of rectangular differential probes for pulsed eddy current nondestructive testing [J]. Insight-Non-Destructive Testing and Condition Monitoring, 2016, 58(2): 87–100.

    Article  Google Scholar 

  8. KARALIS A, JOANNOPOULOS J D, SOLJACIC M. Efficient wireless non-radiative mid-range energy transfer [J]. Annals of Physics, 2008, 323(1): 34–48.

    Article  Google Scholar 

  9. GARCIA-MARTIN J, GOMEZ-GIL J, VAZQUEZ-SANCHEZ E. Non-destructive techniques based on eddy current testing [J]. Sensors, 2011, 11(3): 2525–2565.

    Article  Google Scholar 

  10. SADLER D J, AHN C H. On-chip eddy current sensor for proximity sensing and crack detection [J]. Sensors and Actuators A: Physical, 2001, 91(3): 340–345.

    Article  Google Scholar 

  11. GONG M H, HU B, YU R Q, et al. Design and fabrication of eddy current testing sensors for compressor blade roots [J]. Nondestructive Testing, 2018, 40(10): 10–15 (in Chinese).

    Google Scholar 

  12. BABIC S, SALON S, AKYEL C. The mutual inductance of two thin coaxial disk coils in air [J]. IEEE Transactions on Magnetics, 2004, 40(2): 822–825.

    Article  Google Scholar 

  13. AKYEL C, BABIC S, KINCIC S. New and fast procedures for calculating the mutual inductance of coaxial circular coils (circular coil-disk coil) [J]. IEEE Transactions on Magnetics, 2002, 38(5): 2367–2369.

    Article  Google Scholar 

  14. LI Y. Method and experimental study for high power wireless power transfer via couple magnetic resonances [D]. Tianjin: Hebei University of Technology, 2012 (in Chinese).

    Google Scholar 

  15. LI W. Investigation on eddy current sensors with high-precision and high-stability [D]. Hefei: University of Science and Technology of China, 2018 (in Chinese).

    Google Scholar 

  16. YU Y T, DU P A, LIAO Y Q. Study on effect of coil shape and geometric parameters on performance of eddy current sensor [J]. Chinese Journal of Scientific Instrument, 2007, 28(6): 1045–1050 (in Chinese).

    Google Scholar 

  17. GROBLER A J, VAN SCHOOR G, RANFT E O. Design and optimisation of a PCB eddy current displacement sensor [J]. SAIEE Africa Research Journal, 2017, 108(1): 4–11.

    Article  Google Scholar 

  18. ZHENG D, WANG D, LI S, et al. Eddy current loss calculation and thermal analysis of axial-flux permanent magnet couplers [J]. AIP Advances, 2017, 7(2): 025117.

    Article  Google Scholar 

  19. YU Y, LI H, XUE K, et al. Temperature invariant phenomenon in dual coil eddy current displacement sensor: Investigation, verification and application [J]. IEEE Sensors Journal, 2019, 19(21): 9680–9687.

    Article  Google Scholar 

  20. JIAO S, LIU X, ZENG Z. Intensive study of skin effect in eddy current testing with pancake coil [J]. IEEE Transactions on Magnetics, 2017, 53(7): 1–8.

    Article  Google Scholar 

  21. CHEN J X, TAO W, YANG H W, et al. Optimized design of locating algorithm for laser triangulation displacement sensor [J]. Transducer and Microsystem Technologies, 2016, 35(9): 62–65 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhao  (赵 辉).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 51975367)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Liu, Q., Lü, C. et al. Parameter Optimization and Precision Enhancement of Dual-Coil Eddy Current Sensor. J. Shanghai Jiaotong Univ. (Sci.) 28, 596–603 (2023). https://doi.org/10.1007/s12204-022-2511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-022-2511-9

Key words

关键词

CLC number

Document code

Navigation