Skip to main content
Log in

Finite element model for linear-elastic mixed mode loading using adaptive mesh strategy

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

An adaptive mesh finite element model has been developed to predict the crack propagation direction as well as to calculate the stress intensity factors (SIFs), under linear-elastic assumption for mixed mode loading application. The finite element mesh is generated using the advancing front method. In order to suit the requirements of the fracture analysis, the generation of the background mesh and the construction of singular elements have been added to the developed program. The adaptive remeshing process is carried out based on the posteriori stress error norm scheme to obtain an optimal mesh. Previous works of the authors have proposed techniques for adaptive mesh generation of 2D cracked models. Facilitated by the singular elements, the displacement extrapolation technique is employed to calculate the SIF. The fracture is modeled by the splitting node approach and the trajectory follows the successive linear extensions of each crack increment. The SIFs values for two different case studies were estimated and validated by direct comparisons with other researchers work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alshoaibi, A.M., Ariffin, A.K., 2006. Finite element simulation of stress intensity factors in elastic-plastic crack growth. J. Zhejiang Univ. Sci. A, 7(8):1336–1342. [doi:10.1631/jzus.2006.A1336]

    Article  MATH  Google Scholar 

  • Alshoaibi, A.M., Hadi, M.S.A., Ariffin, A.K., 2007. An adaptive finite element procedure for crack propagation analysis. J. Zhejiang Univ. Sci. A, 8(2):228–236. [doi:10.1631/jzus.2007.A0228]

    Article  MATH  Google Scholar 

  • Anlas, G., Santare, M., Lambros, J., 2000. Numerical calculation of stress intensity factors in functionally graded materials. Int. J. Fracture, 104(2):131–143. [doi:10.1023/A:1007652711735]

    Article  Google Scholar 

  • Barsoum, R.S., 1976. On the use of isoparametric finite element in linear fracture mechanics. International Journal of Numerical Methods in Engineering, 10(1):25–37. [doi:10.1002/nme.1620100103]

    Article  MATH  Google Scholar 

  • Bittencourt, T.N., Wawrzynek, P.A., Ingraffea, A.R., Sousa, J.L.A., 1996. Quasi-automatic simulation of crack propagation for 2D LEFM problems. Engineering Fracture Mechanics, 55(2):321–334. [doi:10.1016/0013-7944(95)00247-2]

    Article  Google Scholar 

  • Bordas, S., Moran, B., 2006. Enriched finite elements and level sets for damage tolerance assessment of complex structures. Engineering Fracture Mechanics, 73(9):1176–1201. [doi:10.1016/j.engfracmech.2006.01.006]

    Article  Google Scholar 

  • Chang, J., Quan, X.J., Mutoh, Y., 2006. A general mixed-mode brittle fracture criterion for cracked materials. Engineering Fracture Mechanics, 73(9):1249–1263. [doi:10.1016/j.engfracmech.2005.12.011]

    Article  Google Scholar 

  • de Araújo, T., Bittencourt, T., Roehl, D., Martha, L., 2000. Numerical Estimation of Fracture Parameters in Elastic and Elastic-plastic Analysis. European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona.

  • de Matos, P.F.P., Moreira, P.M., Portela, A., de Castro, P.M., 2004. Dual boundary element analysis of cracked plates: post-processing implementation of the singularity subtraction technique. Computers and Structures, 82(17–19):1443–1449. [doi:10.1016/j.compstruc.2004.03.040]

    Article  Google Scholar 

  • de Murais, A.B., 2007. Calculation of stress intensity factors by the force method. Engineering Fracture Mechanics, 74(5):739–750. [doi:10.1016/j.engfracmech.2006.06.017]

    Article  Google Scholar 

  • Fett, T., Gerteisen, G., Hahnenberger, S., Martin, G., Munz, D., 1995. Fracture tests for ceramics under mode-I, mode-II and mixed-mode loading. Journal of the European Ceramic Society, 15(4):307–312. [doi:10.1016/0955-2219(95)90353-K]

    Article  Google Scholar 

  • Filon, L., 1903. On an approximate solution for the bending of a beam of rectangular cross-section under any system load, with special reference to points of concentrated or discontinuous loading. Philosophical Transactions of the Royal Society of London, Series A, 201(1):63–155. [doi:10.1098/rsta.1903.0014]

    Article  MATH  Google Scholar 

  • Freese, C.E., Tracey, D.M., 1976. The natural triangle versus collapsed quadrilateral for elastic crack analysis. Int. J. Fracture, 12:767–770.

    Google Scholar 

  • Guinea, G.V., Planan, J., Elices, M., 2000. K 1 evaluation by the displacement extrapolation technique. Engineering Fracture Mechanics, 66(3):243–255. [doi:10.1016/S00137944(00)00016-3]

    Article  Google Scholar 

  • Löhner, R., 1997. Automatic unstructured grid generators. Finite Elements in Analysis and Design, 25(1–2):111–134. [doi:10.1016/S0168-874X(96)00038-8]

    Article  MathSciNet  MATH  Google Scholar 

  • Phongthanapanich, S., Dechaumphai, P., 2004. Adaptive Delaunay triangulation with object-oriented programming for crack propagation analysis. Finite Elements in Analysis and Design, 40(13–14):1753–1771. [doi:10.1016/j.finel.2004.01.002]

    Article  Google Scholar 

  • Szutkowska, M., Boniecki, M., 2006. Subcritical crack growth in Zirconia-toughened alumina (ZTA) ceramics. Journal of Materials Processing Technology, 175(1–3):416–420. [doi:10.1016/j.jmatprotec.2005.04.030]

    Article  Google Scholar 

  • Ventura, G., Xu, J.X., Belylschko, T., 2001. Level Set Crack Propagation Modelling in the Element-free Galerkin Method. Int. European Conference on Computational Mechanics.

  • Zienkiewicz, O., Taylor, R., Zhu, J., 2005. The Finite Element Method: Its Basis and Fundamentals. Baker & Taylor Books.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloud Souiyah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souiyah, M., Alshoaibi, A., Muchtar, A. et al. Finite element model for linear-elastic mixed mode loading using adaptive mesh strategy. J. Zhejiang Univ. Sci. A 9, 32–37 (2008). https://doi.org/10.1631/jzus.A072176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A072176

Key words

CLC number

Navigation