Skip to main content
Log in

A multiscale-contour-based interpolation framework for generating a time-varying quasi-dense point cloud sequence

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

To speed up the reconstruction of 3D dynamic scenes in an ordinary hardware platform, we propose an efficient framework to reconstruct 3D dynamic objects using a multiscale-contour-based interpolation from multi-view videos. Our framework takes full advantage of spatio-temporal-contour consistency. It exploits the property to interpolate single contours, two neighboring contours which belong to the same model, and two contours which belong to the same view at different times, corresponding to point-, contour-, and model-level interpolations, respectively. The framework formulates the interpolation of two models as point cloud transport rather than non-rigid surface deformation. Our framework speeds up the reconstruction of a dynamic scene while improving the accuracy of point-pairing which is used to perform the interpolation. We obtain a higher frame rate, spatio-temporal-coherence, and a quasi-dense point cloud sequence with color information. Experiments with real data were conducted to test the efficiency of the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, N., Junejo, I.N., 2013. A system for 3D video acquisition and spatio-temporally coherent 3D animation reconstruction using multiple RGB-D cameras. Int. J. Signal Process. Image Process. Patt. Recogn., 6(2):113–128.

    Google Scholar 

  • Allain, B., Franco, J.S., Boye, R.E., 2015. An efficient volumetric framework for shape tracking. IEEE Conf. on Computer Vision and Pattern Recognition, p.268–276. http://dx.doi.org/10.1109/CVPR.2015.7298623

    Google Scholar 

  • Arita, D., Taniguchi, R., 2001. RPV-II: a stream-based realtime parallel vision system and its application to real-time volume reconstruction. 2nd Int. Workshop on Computer Vision Systems, p.174–189. http://dx.doi.org/10.1007/3-540-48222-9_12

    Chapter  Google Scholar 

  • Baumgart, B.G., 1974. Geometric Modeling for Computer Vision. PhD Thesis, Stanford University, Stanford, USA.

    Google Scholar 

  • Bilir, S.C., Yemez, Y., 2012. Non-rigid 3D shape tracking from multiview video. Comput. Vis. Image Understand., 116(11): 1121–1134. http://dx.doi.org/10.1016/j.cviu.2012.07.001

    Article  Google Scholar 

  • Borovikov, E., Sussman, A., Davis, L., 2003. A high performance multi-perspective vision studio. 17th Annual Int. Conf. on Supercomputing, p.348–357. http://dx.doi.org/10.1145/782814.782862

    Google Scholar 

  • Cheung, G.K.M., Kanade, T., Bouguet, J.Y., 2000. A real time system for robust 3D voxel reconstruction of human motions. IEEE Conf. on Computer Vision and Pattern Recognition, p.714–720. http://dx.doi.org/10.1109/CVPR.2000.854944

    Google Scholar 

  • Cheung, G.K.M., Baker, S., Kanade, T., 2003. Visual hull alignment and refinement across time: a 3D reconstruction algorithm combining shape-from-silhouette with stereo. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.375–382. http://dx.doi.org/10.1109/CVPR.2003.1211493

    Google Scholar 

  • Díaz-Más, L., Muñoz-Salinas, R., Madrid-Cuevas, F.J., et al., 2010. Shape from silhouette using Dempster-Shafer theory. Patt. Recog., 43(6):2119–2131. http://dx.doi.org/10.1016/j.patcog.2010.01.001

    Article  Google Scholar 

  • Duckworth, T., Roberts, D.J., 2011. Accelerated polyhedral visual hulls using OpenCL. IEEE Virtual Reality Conf., p.203–204. http://dx.doi.org/10.1109/VR.2011.5759469

    Google Scholar 

  • Franco, J.S., Boyer, E., 2009. Efficient polyhedral modeling from silhouettes. IEEE Trans. Patt. Anal. Mach. Intell., 31(3):414–427. http://dx.doi.org/10.1109/TPAMI.2008.104

    Article  Google Scholar 

  • Furukawa, Y., Ponce, J., 2009. Carved visual hulls for imagebased modeling. Int. J. Comput. Vis., 81(1):53–67. http://dx.doi.org/10.1007/s11263-008-0134-8

    Article  Google Scholar 

  • Furukawa, Y., Ponce, J., 2010. Accurate, dense, and robust multiview stereopsis. IEEE Trans. Patt. Anal. Mach. Intell., 32(8):1362–1376. http://dx.doi.org/10.1109/TPAMI.2009.161

    Article  Google Scholar 

  • Haro, G., 2012. Shape from silhouette consensus. Patt. Recogn., 45(9):3231–3244. http://dx.doi.org/10.1016/j.patcog.2012.02.029

    Article  Google Scholar 

  • Hasler, N., Rosenhahn, B., Thormahlen, T., et al., 2009. Markerless motion capture with unsynchronized moving cameras. IEEE Conf. on Computer Vision and Pattern Recognition, p.224–231. http://dx.doi.org/10.1109/CVPR.2009.5206859

    Google Scholar 

  • Hauswiesner, S., Khlebnikov, R., Steinberger, M., et al., 2012. Multi-GPU image-based visual hull rendering. 12th Eurographics Symp. on Parallel Graphics and Visualization, p.119–128.

    Google Scholar 

  • Hofmann, M.H., Davrila, M.G., 2009. Multi-view 3D human pose estimation combining single-frame recovery, temporal integration and model adaptation. IEEE Conf. on Computer Vision and Pattern Recognition, p.2214–2221. http://dx.doi.org/10.1109/CVPR.2009.5206508

    Google Scholar 

  • Huang, C.H., Lu, D.M., Diao, C.Y., 2013. Accelerated visual hulls of complex objects using contribution weights. Proc. 7th Int. Conf. on Image and Graphics, p.685–689. http://dx.doi.org/10.1109/ICIG.2013.139

    Google Scholar 

  • Huang, C.H., Lu, D.M., Diao, C.Y., 2014a. A point cloud representation using plane-space-local-area-colorconsistency. J. Comput.-Aided Des. Comput. Graph., 26(8):1297–1303 (in Chinese).

    Google Scholar 

  • Huang, C.H., Boyer, E., Navab, N., et al., 2014b. Human shape and pose tracking using keyframes. IEEE Conf. on Computer Vision and Pattern Recognition, p.3446–3453. http://dx.doi.org/10.1109/CVPR.2014.440

    Google Scholar 

  • Kanaujia, A., Haering, N., Taylor, G., et al., 2011. 3D human pose and shape estimation from multi-view imagery. IEEE Computer Vision and Pattern Recognition Workshops, p.49–56. http://dx.doi.org/10.1109/CVPRW.2011.5981821

    Google Scholar 

  • Kim, D., Dahyot, R., 2012. Bayesian shape from silhouettes. Int. Workshop on Multimedia Understanding Through Semantics, Computation, and Learning, p.78–89. http://dx.doi.org/10.1007/978-3-642-32436-9_7

    Google Scholar 

  • Laurentini, A., 1994. The visual hull concept for silhouettebased image understanding. IEEE Trans. Patt. Anal. Mach. Intell., 16(2):150–162. http://dx.doi.org/10.1109/34.273735

    Article  Google Scholar 

  • Li, K., Dai, Q.H., Xu, W.L., 2011. Markerless shape and motion capture from multiview video sequences. IEEE Trans. Circ. Syst. Video Technol., 21(3):320–334. http://dx.doi.org/10.1109/TCSVT.2011.2106251

    Article  Google Scholar 

  • Liu, Y.B., Dai, Q.H., Xu, W.L., 2010. A point-cloud-based multiview stereo algorithm for free-view-point video. IEEE Trans. Vis. Comput. Graph., 16(3):407–418. http://dx.doi.org/10.1109/TVCG.2009.88

    Article  Google Scholar 

  • Matsuyama, T., Wu, X.J., Takai, T., et al., 2004. Real-time dynamic 3-D object shape reconstruction and high-fidelity texture mapping for 3-D video. IEEE Trans. Circ. Syst. Video Technol., 14(3):357–369. http://dx.doi.org/10.1109/TCSVT.2004.823396

    Article  Google Scholar 

  • Matusik, W., Buehler, C., Raskar, R., et al., 2000. Image-based visual hulls. ACM Special Interest Group on Computer Graphics, p.369–374. http://dx.doi.org/10.1145/344779.344951

    Google Scholar 

  • Nakajima, H., Makihara, Y., Hsu, H., et al., 2012. Point cloud transport. 21st Int. Conf. on Pattern Recognition, p.3803–3806.

    Google Scholar 

  • Nakazawa, M., Mitsugami, I., Makihara, Y., et al., 2012. Dynamic scene reconstruction using asynchronous multiple Kinects. 21st Int. Conf. on Pattern Recognition, p.469–472.

    Google Scholar 

  • Perez, J.M., Aledo, P.G., Sanchez, P.P., 2012. Real-time voxel-based visual hull reconstruction. Microprocess. Microsyst., 36(5):439–447. http://dx.doi.org/10.1016/j.micpro.2012.05.003

    Article  Google Scholar 

  • Raeesi N., M.R., Wu, Q.M.J., 2010. A complete visual hull representation using bounding edges. 11th Pacific-Rim Conf. on Multimedia, p.171–182. http://dx.doi.org/10.1007/978-3-642-15702-8_16

    Google Scholar 

  • Taneja, A., Ballan, L., Pollefeys, M., 2011. Modeling dynamic scenes recorded with freely moving cameras. 10th Asian Conf. on Computer Vision, p.613–626.

    Google Scholar 

  • Vlasic, D., Peers, P., Baran, I., et al., 2009. Dynamic shape capture using multi-view photometric stereo. ACM Trans. Graph., 28(5):174. http://dx.doi.org/10.1145/1618452.1618520

    Article  Google Scholar 

  • Wang, S.Y., Yu, H.M., 2012. Convex relaxation for a 3D spatiotemporal segmentation model using the primal-dual method. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 13(6):428–439. http://dx.doi.org/10.1631/jzus.C1100331

    Article  Google Scholar 

  • Wu, X.J., Takizawa, O., Matsuyama, T., 2006. Parallel pipeline volume intersection for real-time 3D shape reconstruction on a PC cluster. IEEE Int. Conf. on Computer Vision Systems, p.1–4. http://dx.doi.org/10.1109/ICVS.2006.49

    Google Scholar 

  • Xia, D., Li, D.H., Li, Q.G., 2011. A novel approach for computing exact visual hull from silhouettes. Optik, 122(24):2220–2226. http://dx.doi.org/10.1016/j.ijleo.2011.02.013

    Article  Google Scholar 

  • Zhang, Z., Seah, H.S., Quah, C.K., et al., 2011. A multiple camera system with real-time volume reconstruction for articulated skeleton pose tracking. 17th Int. Multimedia Modeling Conf., p.182–192. http://dx.doi.org/10.1007/978-3-642-17832-0_18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-yu Diao.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2012CB725305), the Natural Science Foundation of Guizhou Province, China (No. 20132094), the National Social Science Fund, China (No. 12&ZD32), and the Introducing Talents Foundation of Guizhou University, China (No. 2012028)

ORCID: Chu-hua HUANG, http://orcid.org/0000-0003-3507-4256

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Ch., Lu, Dm. & Diao, Cy. A multiscale-contour-based interpolation framework for generating a time-varying quasi-dense point cloud sequence. Frontiers Inf Technol Electronic Eng 17, 422–434 (2016). https://doi.org/10.1631/FITEE.1500316

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500316

Keywords

CLC number

Navigation