Skip to main content
Log in

Carved Visual Hulls for Image-Based Modeling

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This article presents a novel method for acquiring high-quality solid models of complex 3D shapes from multiple calibrated photographs. After the purely geometric constraints associated with the silhouettes found in each image have been used to construct a coarse surface approximation in the form of a visual hull, photoconsistency constraints are enforced in three consecutive steps: (1) the rims where the surface grazes the visual hull are first identified through dynamic programming; (2) with the rims now fixed, the visual hull is carved using graph cuts to globally optimize the photoconsistency of the surface and recover its main features; (3) an iterative (local) refinement step is finally used to recover fine surface details. The proposed approach has been implemented, and experiments with seven real data sets are presented, along with qualitative and quantitative comparisons with several state-of-the-art image-based-modeling algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baumgart, B. (1974). Geometric modeling for computer vision. Ph.D. thesis, Stanford University.

  • Boykov, Y., & Kolmogorov, V. (2003). Computing geodesics and minimal surfaces via graph cuts. In ICCV (pp. 26–33).

  • Cheung, K. M., Baker, S., & Kanade, T. (2003). Visual hull alignment and refinement across time: a 3D reconstruction algorithm combining shape-from-silhouette with stereo. In CVPR.

  • Delingette, H., Hebert, M., & Ikeuchi, K. (1992). Shape representation and image segmentation using deformable surfaces. IVC, 10(3), 132–144.

    Article  Google Scholar 

  • Faugeras, O., & Keriven, R. (1998). Variational principles, surface evolution, PDE’s, level set methods and the stereo problem. IEEE Transactions on Image Processing, 7(3), 336–344.

    Article  MATH  MathSciNet  Google Scholar 

  • Furukawa, Y., & Ponce, J. (2006). Carved visual hulls for image-based modeling. ECCV, 1, 564–577.

    Google Scholar 

  • Furukawa, Y., & Ponce, J. (2007). Accurate, dense, and robust multi-view stereopsis. In CVPR.

  • Goesele, M., Curless, B., & Seitz, S. M. (2006). Multi-view stereo revisited. In CVPR (pp. 2402–2409).

  • Habbecke, M., & Kobbelt, L. (2007). A surface-growing approach to multi-view stereo reconstruction. In CVPR.

  • Hernández Esteban, C., & Schmitt, F. (2004). Silhouette and stereo fusion for 3D object modeling. CVIU, 96(3), 367–392.

    Article  Google Scholar 

  • Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1993). Mesh optimization. In SIGGRAPH (pp. 19–26). New York: ACM Press.

    Google Scholar 

  • Hornung, A., & Kobbelt, L. (2006). Hierarchical volumetric multi-view stereo reconstruction of manifold surfaces based on dual graph embedding. In CVPR (pp. 503–510).

  • Keriven, R. (2002). A variational framework to shape from contours (Technical Report 2002-221). ENPC.

  • Kolmogorov, V., & Zabih, R. (2002). Multi-camera scene reconstruction via graph cuts. ECCV, 3, 82–96.

    Google Scholar 

  • Kutulakos, K., & Seitz, S. (2000). A theory of shape by space carving. IJCV, 38(3), 199–218.

    Article  MATH  Google Scholar 

  • Lachaud, J.-O., & Montanvert, A. (1999). Deformable meshes with automated topology changes for coarse-to-fine 3D surface extraction. Medical Image Analysis, 3(2), 187–207.

    Article  Google Scholar 

  • Lazebnik, S., Furukawa, Y., & Ponce, J. (2007). Projective visual hulls. International Journal of Computer Vision, 74(2), 137–165.

    Article  Google Scholar 

  • Matusik, W., Pfister, H., Ngan, A., Beardsley, P., Ziegler, R., & McMillan, L. (2002). Image-based 3D photography using opacity hulls. In SIGGRAPH.

  • Paris, S., Sillion, F., & Quan, L. (2004). A surface reconstruction method using global graph cut optimization. In ACCV.

  • Pons, J.-P., Keriven, R., & Faugeras, O. D. (2005). Modelling dynamic scenes by registering multi-view image sequences. In CVPR (2) (pp. 822–827).

  • Roy, S., & Cox, I. J. (1998). A maximum-flow formulation of the N-camera stereo correspondence problem. In ICCV (p. 492).

  • Schaffalitzky, F., & Zisserman, A. (2001). Viewpoint invariant texture matching and wide baseline stereo. In ICCV.

  • Seitz, S., & Dyer, C. (1997). Photorealistic scene reconstruction by voxel coloring. In CVPR (pp. 1067–1073).

  • Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. CVPR, 1, 519–528.

    Google Scholar 

  • Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2007). Multi-view stereo evaluation. http://vision.middlebury.edu/mview/.

  • Sinha, S., & Pollefeys, M. (2004). Visual hull reconstruction from uncalibrated and unsynchronized video streams. In Int. symp. on 3D data processing, visualization & transmission.

  • Sinha, S., & Pollefeys, M. (2005). Multi-view reconstruction using photo-consistency and exact silhouette constraints: a maximum-flow formulation. In ICCV.

  • Soatto, S., Yezzi, A., & Jin, H. (2003). Tales of shape and radiance in multiview stereo. In ICCV (pp. 974–981).

  • Strecha, C., Fransens, R., & Gool, L. V. (2006). Combined depth and outlier estimation in multi-view stereo. In CVPR (pp. 2394–2401).

  • Tran, S., & Davis, L. (2006). 3D surface reconstruction using graph cuts with surface constraints. In ECCV (pp. II: 219–231).

  • Uffenkamp, V. (1993). State of the art of high precision industrial photogrammetry. In Third international workshop on accelerator alignment. Annecy, France.

  • Vogiatzis, G., Torr, P. H., & Cipolla, R. (2005). Multi-view stereo via volumetric graph-cuts. In CVPR (pp. 391–398).

  • Xu, C., & Prince, J. (1997). Gradient vector flow: a new external force for snakes. In CVPR (pp. 66–71).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutaka Furukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furukawa, Y., Ponce, J. Carved Visual Hulls for Image-Based Modeling. Int J Comput Vis 81, 53–67 (2009). https://doi.org/10.1007/s11263-008-0134-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-008-0134-8

Keywords

Navigation