Skip to main content
Log in

Multiclass classification based on a deep convolutional network for head pose estimation

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Head pose estimation has been considered an important and challenging task in computer vision. In this paper we propose a novel method to estimate head pose based on a deep convolutional neural network (DCNN) for 2D face images. We design an effective and simple method to roughly crop the face from the input image, maintaining the individual-relative facial features ratio. The method can be used in various poses. Then two convolutional neural networks are set up to train the head pose classifier and then compared with each other. The simpler one has six layers. It performs well on seven yaw poses but is somewhat unsatisfactory when mixed in two pitch poses. The other has eight layers and more pixels in input layers. It has better performance on more poses and more training samples. Before training the network, two reasonable strategies including shift and zoom are executed to prepare training samples. Finally, feature extraction filters are optimized together with the weight of the classification component through training, to minimize the classification error. Our method has been evaluated on the CAS-PEAL-R1, CMU PIE, and CUBIC FacePix databases. It has better performance than state-of-the-art methods for head pose estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Black, J.A.Jr., Gargesha, M., Kahol, K., et al., 2002. A framework for performance evaluation of face recognition algorithms. SPIE, 4862:163. [doi:10.1117/12. 473032]

    Google Scholar 

  • Ciresan, D., Meier, U., Schmidhuber, J., 2012. Multi-column deep neural networks for image classification. CVPR, p.3642–3649. [doi:10.1109/CVPR.2012.6248110]

    Google Scholar 

  • Farabet, C., Couprie, C., Najman, L., et al., 2013. Learning hierarchical features for scene labeling. IEEE Trans. Patt. Anal. Mach. Intell., 35(8):1915–1929. [doi:10.1109/TPAMI.2012.231]

    Article  Google Scholar 

  • Fu, Y., Huang, T.S., 2006. Graph embedded analysis for head pose estimation. 7th Int. Conf. on Automatic Face and Gesture Recognition, p.1–6. [doi:10.1109/FGR.2006.60]

    Google Scholar 

  • Fukushima, K., 1980. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern., 36(4):193–202. [doi:10.1007/BF00344251]

    Article  MATH  Google Scholar 

  • Gao, W., Cao, B., Shan, S.G., et al., 2008. The CAS-PEAL large-scale Chinese face database and baseline evaluations. IEEE Trans. Syst. Man. Cybern. A, 38(1):149–161. [doi:10.1109/TSMCA.2007.909557]

    Article  Google Scholar 

  • Huang, C., Ding, X.Q., Fang, C., 2010. Head pose estimation based on random forests for multiclass classification. ICPR, p.934–937. [doi:10.1109/ICPR.2010.234]

    Google Scholar 

  • Jarrett, K., Kavukcuoglu, K., Ranzato, M., et al., 2009. What is the best multi-stage architecture for object recognition? ICCV, p.2146–2153. [doi:10.1109/ICCV. 2009.5459469]

    Google Scholar 

  • Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep convolutional neural networks. NIPS, p.1097–1105.

    Google Scholar 

  • Lanitis, A., Taylor, C.J., Cootes, T.F., et al., 1995. Automatic interpretation of human faces and hand gestures using flexible models. Int. Workshop on Automatic Face-and Gesture-Recognition, p.98–103.

    Google Scholar 

  • LeCun, Y., Bengio, Y., 1995. Convolutional networks for images, speech, and time series. In: Arbib, M.A., (Ed.), The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge.

    Google Scholar 

  • LeCun, Y., Jackel, L.D., Boser, B., et al., 1989. Handwritten digit recognition: applications of neural network chips and automatic learning. IEEE Commun. Mag., 27(11):41–46. [doi:10.1109/35.41400]

    Article  Google Scholar 

  • LeCun, Y., Kanter, I., Solla, S.A., 1991. Eigenvalues of covariance matrices: application to neural-network learning. Phys. Rev. Lett., 66(18):2396. [doi:10.1103/ PhysRevLett.66.2396]

    Article  Google Scholar 

  • LeCun, Y., Bottou, L., Bengio, Y., et al., 1998. Gradientbased learning applied to document recognition. Proc. IEEE, 86(11):2278–2324. [doi:10.1109/5.726791]

    Article  Google Scholar 

  • Luo, P., Wang, X.G., Tang, X.O., 2012. Hierarchical face parsing via deep learning. CVPR, p.2480–2487. [doi:10.1109/CVPR.2012.6247963]

    Google Scholar 

  • Ma, B.P., Zhang, W.C., Shan, S.G., et al., 2006. Robust head pose estimation using LGBP. ICPR, p.512–515. [doi:10.1109/ICPR.2006.1006]

    Google Scholar 

  • Ma, B.P., Chai, X.J., Wang, T.J., 2013. A novel feature descriptor based on biologically inspired feature for head pose estimation. Neurocomputing, 115(4):1–10. [doi:10.1016/jneucom.2012.11.005]

    Article  Google Scholar 

  • Matsugu, M., Cardon, P., 2004. Unsupervised feature selection for multi-class object detection using convolutional neural networks. ISNN, p.864–869. [doi:10.1007/978–3-540–28647-9_142]

    Google Scholar 

  • Murphy-Chutorian, E., Trivedi, M.M., 2009. Head pose estimation in computer vision: a survey. IEEE Trans. Patt. Anal. Mach. Intell., 31(4):607–626. [doi:10.1109/ TPAMI.2008.106]

    Article  Google Scholar 

  • Raytchev, B., Yoda, I., Sakaue, K., 2004. Head pose estimation by nonlinear manifold learning. ICPR, p.462–466. [doi:10.1109/ICPR.2004.1333802]

    Google Scholar 

  • Scherer, D., Müller, A., Behnke, S., 2010. Evaluation of pooling operations in convolutional architectures for object recognition. Proc. 20th Int. Conf. on Artificial Neural Networks, p.92–101. [doi:10.1007/978–3-642–15825-4_10]

    Google Scholar 

  • Sim, T., Baker, S., Bsat, M., 2002. The CMU pose, illumination, and expression (PIE) database. 5th IEEE Int. Conf. on Automatic Face and Gesture Recognition, p.46–51. [doi:10.1109/AFGR.2002.1004130]

    Google Scholar 

  • Simard, P.Y., Steinkraus, D., Platt, J.C., 2003. Best practices for convolutional neural networks applied to visual document analysis. 7th Int. Conf. on Document Analysis and Recognition, p.958–963. [doi:10.1109/ ICDAR.2003.1227801]

    Google Scholar 

  • Storer, M., Urschler, M., Bischof, H., 2009. 3D-MAM: 3D morphable appearance model for efficient fine head pose estimation from still images. ICCV, p.192–199. [doi:10.1109/ICCVW.2009.5457701]

    Google Scholar 

  • Sun, Y., Wang, X.G., Tang, X.O., 2013. Deep convolutional network cascade for facial point detection. CVPR, p.3476–3483. [doi:10.1109/CVPR.2013.446]

    Google Scholar 

  • Tang, Y.Q., Sun, Z.N., Tan, T.N., 2014. A survey on head pose estimation. Patt. Recogn. Artif. Intell., 27(3):213–225 (in Chinese).

    Google Scholar 

  • Wang, J.G., Sung, E., 2007. EM enhancement of 3D head pose estimated by point at infinity. Image Vis. Comput., 25(12):1864–1874. [doi:10.1016/jimavis. 2005.12.017]

    Article  Google Scholar 

  • Wang, X.W., Huang, X.Y., Gao, J.Z., et al., 2008. Illumination and person-insensitive head pose estimation using distance metric learning. ECCV, p.624–637. [doi:10.1007/978–3-540–88688-4_46]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-long Yang.

Additional information

ORCID: Ying CAI, http://orcid.org/0000-0002-5096-6175

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Yang, Ml. & Li, J. Multiclass classification based on a deep convolutional network for head pose estimation. Frontiers Inf Technol Electronic Eng 16, 930–939 (2015). https://doi.org/10.1631/FITEE.1500125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500125

Key words

Document code

CLC number

Navigation