Skip to main content
Log in

Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration

组织工程复合支架聚乳酸-羟基乙酸共聚物和羟 基磷灰石纳米粒子接种自体骨髓间充质干细胞应用于骨再生

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

A new therapeutic strategy using nanocomposite scaffolds of grafted hydroxyapatite (g-HA)/poly(lactide-co-glycolide) (PLGA) carried with autologous mesenchymal stem cells (MSCs) and bone morphogenetic protein-2 (BMP-2) was assessed for the therapy of critical bone defects. At the same time, tissue response and in vivo mineralization of tissue-engineered implants were investigated.

Methods

A composite scaffold of PLGA and g-HA was fabricated by the solvent casting and particulate-leaching method. The tissue-engineered implants were prepared by seeding the scaffolds with autologous bone marrow MSCs in vitro. Then, mineralization and osteogenesis were observed by intramuscular implantation, as well as the repair of the critical radius defects in rabbits.

Results

After eight weeks post-surgery, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) revealed that g-HA/PLGA had a better interface of tissue response and higher mineralization than PLGA. Apatite particles were formed and varied both in macropores and micropores of g-HA/PLGA. Computer radiographs and histological analysis revealed that there were more and more quickly formed new bone formations and better fusion in the bone defect areas of g-HA/PLGA at 2–8 weeks post-surgery. Typical bone synostosis between the implant and bone tissue was found in g-HA/PLGA, while only fibrous tissues formed in PLGA.

Conclusions

The incorporation of g-HA mainly improved mineralization and bone formation compared with PLGA. The application of MSCs can enhance bone formation and mineralization in PLGA scaffolds compared with cell-free scaffolds. Furthermore, it can accelerate the absorption of scaffolds compared with composite scaffolds.

概要

目 的

对应用接枝的羟基磷灰石 (g-HA) /聚乳酸-羟基乙酸共聚物 (PLGA) 纳米复合支架接种自体骨髓间充质干细胞 (MSCs) 和骨形态发生蛋白 2 (BMP-2) 治疗重症骨缺损的新的治疗策略进行评估, 并通过肌肉内移植研究人工骨的组织相容性和移植物在体内的矿化和缺损骨的愈合。

创新点

改性的 PLGA 接种自体 MSCs 的组织工程骨加速了骨缺损的愈合, 使临床重症骨缺损的治疗有了新的手段。

方 法

应用溶剂浇铸和粒子沥滤方法将 PLGA 和 g-HA 制备成复合支架 g-HA/PLGA。 在 g-HA/PLGA 支架上接种兔自体 MSCs 制成组织工程移植物。 取宽 0.3 cm 长 2.0 cm 的上述移植物埋入兔背部肌肉内, 8 周后取出移植物, 使用扫描式电子显微镜 (SEM) 检测人工骨的组织相容性 (图3a), X 射线能量色散谱 (EDX) 分析钙浓度。 然后, 用锯锯掉兔前肢桡骨骨干 2.0 cm, 取同样长度的上述移植物放置于骨缺损处 (图4) 。 术后 2、 4、 8 周应用计算机 X 线摄影 (CR) 检测骨缺损愈合情况 (图5), 组织学分析愈合组织结构 (图6), SEM 检测人工骨与周围组织的相容性 (图7), 反转录聚合酶链式反应 (RT-PCR) 检测愈合组织 Collagen I、 Collagen II 和 Bmp-2 基因的表达。

结 论

PLGA 掺入 g-HA 主要改善了矿化作用, 有益于骨相关基因的表达和骨形成。 自体 MSCs 的应用增强了骨形成和 PLGA 支架的矿化作用, 并加速了支架的吸收。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alsberg, E., Anderson, K.W., Albeiruti, A., et al., 2001. Cellinteractive alginate hydrogels for bone tissue engineering. J. Dent. Res., 80(11):2025–2029. http://dx.doi.org/10.1177/00220345010800111501

    Article  CAS  PubMed  Google Scholar 

  • Bruder, S.P., Jaiswal, N., Haynesworth, S.E., 1997. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell Biochem., 64(2):278–294. http://dx.doi.org/10.1002/(SICI)1097-4644(199702)64

    Article  CAS  PubMed  Google Scholar 

  • Chen, W.C., Anderson, K.W., Albeiruti, A., et al., 2011. Evaluating osteochondral defect repair potential of autologous rabbit bone marrow cells on type II collagen scaffold. Cytotechnology, 63(1):13–23. http://dx.doi.org/10.1007/s10616-010-9314-9

    Article  PubMed  Google Scholar 

  • Ciapetti, G., Ambrosio, L., Savarino, L., et al., 2003. Osteoblast growth and function in porous poly epsiloncaprolactone matrices for bone repair: a preliminary study. Biomaterials, 24(21):3815–3824. http://dx.doi.org/10.1016/S0142-9612(03)00263-1

    Article  CAS  PubMed  Google Scholar 

  • Cleries, L., Fernandez-Pradas, J.M., Morenza, J.L., 2000. Behavior in simulated body fluid of calcium phosphate coatings obtained by laser ablation. Biomaterials, 21(18): 1861–1865. http://dx.doi.org/10.1016/S0142-9612(00)00060-0

    Article  CAS  PubMed  Google Scholar 

  • Cordonnier, T., Layrolle, P., Gaillard, J., et al., 2010. 3D environment on human mesenchymal stem cells differentiation for bone tissue engineering. J. Mater. Sci. Mater. Med., 21(3):981–987. http://dx.doi.org/10.1007/s10856-009-3916-9

    Article  CAS  PubMed  Google Scholar 

  • de Santis, R., Russo, A., Gloria, A., et al., 2015. Towards the design of 3D fiber-deposited poly(e-caprolactone)/iron doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. J. Biomed. Nanotechnol., 11(7): 1236–1246. http://dx.doi.org/10.1166/jbn.2015.2065

    Article  PubMed  Google Scholar 

  • Drosse, I., Volkmer, E., Capanna, R., et al., 2008. Tissue engineering for bone defect healing: an update on a multicomponent approach. Injury, 39(Suppl. 2):S9–S20. http://dx.doi.org/10.1016/S0020-1383(08)70011-1

    Article  PubMed  Google Scholar 

  • Fuchs, J.R., Hannouche, D., Terada, S., et al., 2003. Fetal tracheal augmentation with cartilage engineered from bone marrow-derived mesenchymal progenitor cells. J. Pediatr. Surg., 38(6):984–987. http://dx.doi.org/10.1016/S0022-3468(03)00139-8

    Article  PubMed  Google Scholar 

  • Groeneveld, E.H., van den Bergh, J.P., Holzmann, P., et al., 1999. Mineralization processes in demineralized bone matrix grafts in human maxillary sinus floor elevations. J. Biomed. Mater. Res., 48(4):393–402. http://dx.doi.org/10.1002/(SICI)1097-4636(1999)48:4〈3 93::AID-JBM1〉3.3.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  • Hong, Z.K., Qiu, X.Y., Sun, J.R., et al., 2004. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer, 45(19):6699–6706. http://dx.doi.org/10.1016/j.polymer.2004.07.036

    Article  CAS  Google Scholar 

  • Hong, Z.K., Zhang, P.B., He, C.L., et al., 2005. Nanocomposite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials, 26(32):6296–6304. http://dx.doi.org/10.1016/j.biomaterials.2005.04.018

    Article  CAS  PubMed  Google Scholar 

  • Hong, Z.K., Zhang, P.B., Liu, A.X., et al., 2007. Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles. J. Biomed. Mater. Res. A, 81A(3):515–522. http://dx.doi.org/10.1002/jbm.a.31038

    Article  CAS  Google Scholar 

  • Huang, J., Yao, C.L., Wei, Y.H., et al., 2011. Repair of bone defect in caprine tibia using a laminated scaffold with bone marrow stromal cells loaded poly(L-lactic acid)/ ß-tricalcium phosphate. Artif. Organs, 35(1):49–57. http://dx.doi.org/10.1111/j.1525-1594.2010.01042.x

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa, H., Kitoh, H., Sugiura, F., et al., 2007. The effect of recombinant human bone morphogenetic protein-2 on the osteogenic potential of rat mesenchymal stem cells after several passages. Acta Orthop., 78(2):285–292. http://dx.doi.org/10.1080/17453670710013816

    Article  PubMed  Google Scholar 

  • Jeong, S.I., Ko, E.K., Yum, J., et al., 2008. Nanofibrous poly(lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration. Macromol. Biosci., 8(4):328–338. http://dx.doi.org/10.1002/mabi.200700107

    Article  CAS  PubMed  Google Scholar 

  • Jie, W., Li, Y., 2004. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. J. Eur. Polym., 40(3):509–515. http://dx.doi.org/10.1016/j.eurpolymj.2003.10.028

    Article  Google Scholar 

  • Jung, Y., Kim, S.S., Kim, Y.H., et al., 2005. A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials, 26(32):6314–6322. http://dx.doi.org/10.1016/j.biomaterials.2005.04.007

    Article  CAS  PubMed  Google Scholar 

  • Karageorgiou, V., Kaplan, D., 2005. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27): 5474–5491. http://dx.doi.org/10.1016/j.biomaterials.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  • Katsara, O., Mahaira, L.G., Iliopoulou, E.G., et al., 2011. Effects of donor age, gender, and in vitro cellular aging on the phenotypic, functional, and molecular characteristics of mouse bone marrow-derived mesenchymal stem cells. Stem Cells Dev., 20(9):1549–1561. http://dx.doi.org/10.1089/scd.2010.0280

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.S., Sun Park, M., Jeon, O., et al., 2006. Poly(lactideco-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials, 27(8):1399–1409. http://dx.doi.org/10.1016/j.biomaterials.2005.08.016

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Hong, J., Zheng, Q., et al., 2011. Repair of rat cranial bone defects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2. J. Orthop. Res., 29(11):1745–1752. http://dx.doi.org/10.1002/jor.21439

    Article  CAS  PubMed  Google Scholar 

  • Li, W.J., Tuli, R., Okafor, C., et al., 2005. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 26(6): 599–609. http://dx.doi.org/10.1016/j.biomaterials.2004.03.005

    Article  CAS  PubMed  Google Scholar 

  • Mastrogiacomo, M., Scaglione, S., Martinetti, R., et al., 2006. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials, 27(17):3230–3237. http://dx.doi.org/10.1016/j.biomaterials.2006.01.031

    Article  CAS  PubMed  Google Scholar 

  • Mokbel, N., Bou Serhal, C., Matni, G., et al., 2008. Healing patterns of critical size bony defects in rat following bone graft. Oral Maxillofac. Surg., 12(2):73–78. http://dx.doi.org/10.1007/s10006-008-0107-7

    Article  CAS  PubMed  Google Scholar 

  • Nakahara, H., Goldberg, V.M., Caplan, A.I., 1992. Cultureexpanded periosteum-derived cells exhibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo. Clin. Orthop., 276:291–298.

    Google Scholar 

  • Nishikawa, M., Myoui, A., Ohgushi, H., et al., 2004. Bone tissue engineering using novel interconnected porous hydroxyapatite ceramics combined with marrow mesenchymal cells: quantitative and three-dimensional image analysis. Cell Transplant., 13(4):367–376. http://dx.doi.org/10.3727/000000004783983819

    Article  PubMed  Google Scholar 

  • Roostaeian, J., Carlsen, B., Simhaee, D., et al., 2006. Characterization of growth and osteogenic differentiation of rabbit bone marrow stromal cells. J. Surg. Res., 133(2):76–83. http://dx.doi.org/10.1016/j.jss.2005.09.026

    Article  CAS  PubMed  Google Scholar 

  • Sena, L.A., Caraballo, M.M., Rossi, A.M., et al., 2009. Synthesis and characterization of biocomposites with different hydroxyapatite-collagen ratios. J. Mater. Sci. Mater. Med., 20(12):2395–2400. http://dx.doi.org/10.1007/s10856-009-3813-2

    Article  CAS  PubMed  Google Scholar 

  • Stone, K.R., Steadman, J.R., Rodkey, W.G., et al., 1997. Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. J. Bone Joint Surg. Am., 79(12):1770–1777. http://dx.doi.org/10.2106/00004623-199712000-00002

    Article  CAS  PubMed  Google Scholar 

  • Sugiura, F., Kitoh, H., Ishiguro, N., 2004. Osteogenic potential of rat mesenchymal stem cells after several passages. Biochem. Biophys. Res. Commun., 316(1):233–239. http://dx.doi.org/10.1016/j.bbrc.2004.02.038

    Article  CAS  PubMed  Google Scholar 

  • Tae, S.K., Lee, S.H., Park, J.S., et al., 2006. Mesenchymal stem cells for tissue engineering and regenerative medicine. Biomed. Mater., 1(2):63–71. http://dx.doi.org/10.1088/1748-6041/1/2/003

    Article  CAS  PubMed  Google Scholar 

  • Tu, J., Wang, H., Li, H., et al., 2009. The in vivo bone formation by mesenchymal stem cells in zein scaffolds. Biomaterials, 30(26):4369–4376. http://dx.doi.org/10.1016/j.biomaterials.2009.04.054

    Article  CAS  PubMed  Google Scholar 

  • Ueno, T., Honda, K., Hirata, A., et al., 2008. Histological comparison of bone induced from autogenously grafted periosteum with bone induced from autogenously grafted bone marrow in the rat calvarial defect model. Acta Histochem., 110(3):217–223. http://dx.doi.org/10.1016/j.acthis.2007.10.008

    Article  PubMed  Google Scholar 

  • Vacanti, C.A., Kim, W., Upton, J., et al., 1993. Tissueengineered growth of bone and cartilage. Transplant. Proc., 25(1 Pt 2):1019–1021.

    CAS  PubMed  Google Scholar 

  • Wang, Z., Yu, Y., Wang, Y., et al., 2016. Enhanced in vitro mineralization and in vivo osteogenesis of composite scaffolds through controlled surface grafting of L-actic acid oligomer on nanohydroxyapatite. Biomacromolecules, 17(3):818–829. http://dx.doi.org/10.1021/acs.biomac.5b01543

    Article  CAS  PubMed  Google Scholar 

  • Zhang, P., Hong, Z., Yu, T., et al., 2009. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide). Biomaterials, 30(1):58–70. http://dx.doi.org/10.1016/j.biomaterials.2008.08.041

    Article  PubMed  Google Scholar 

  • Zhang, R., Ma, P.X., 1999. Poly(a-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J. Biomed. Mater. Res., 44(4): 446–455. http://dx.doi.org/10.1002/(SICI)1097-4636(19990315)44: 4〈446::AID-JBM11〉3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  • Zhou, S., Greenberger, J.S., Epperly, M.W., et al., 2008. Agerelated intrinsic changes in human bone-marrowderived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell, 7(3):335–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Wu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 51473164 and 51273195), the Joint Research Project of Chinese Academy of Sciences and Japan Society for the Promotion of Science (CAS-JSPS; No. GJHZ1519), and the International Science and Technology Cooperation Program of China (No. 2014DFG52510)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Zhang, Pb., Wang, Zl. et al. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. J. Zhejiang Univ. Sci. B 18, 963–976 (2017). https://doi.org/10.1631/jzus.B1600412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600412

Key words

CLC number

关键词

Navigation