Skip to main content
Log in

Needs of thermodynamic properties measurements and modeling in the frame of new regulations on refrigerants

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

In 1987, the Montreal Protocol prohibited the worldwide use and production of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) and hydro fluorocarbons (HFCs) were proposed as alternative refrigerants. Unfortunately, HFCs have non negligible global warning potential and therefore new refrigerants must be proposed or old refrigerants must be used associated with HFC. Accurate experimental thermodynamic data and predictive techniques are required for better understanding of the performance of the newly proposed refrigerants. In this communication, experimental techniques based on either analytic or synthetic methods are first described. Data are reported. Then two newly developed predictive models based on thermodynamic approach with the isofugacity criterion and artificial neural network method are presented. The results can provide better evaluation of refrigerants, especially with the aim of studying global warning effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åberg, E.R., Gustavsson, A. G., 1982. Design and evaluation of modified simplex methods. Analytica Chimica Acta, 144(2):39–53. [doi:10.1016/S0003-2670(01)95518-7]

    Article  Google Scholar 

  • Bouchot, C., Richon, D., 1998. Direct PVT and VLE measurements with a single equipment using a vibrating tube densimeter up to 393 K and 40 MPa: description of the original apparatus and new data. Industrial & Engineering Chemistry Research, 37(8):3295–3304. [doi:10.1021/ie970804w]

    Article  Google Scholar 

  • Bouchot, C., Richon, D., 2001. An enhanced method to calibrate vibrating tube densimeter. Fluid Phase Equilib., 191:189–208.

    Article  Google Scholar 

  • Chouai, A., Laugier, S., Richon, D., 2002. Modelling of thermodynamic properties using neural networks. Application to refrigerants. Fluid Phase Equilib., 199(1–2):53–62. [doi:10.1016/S0378-3812(01)00627-6]

    Article  Google Scholar 

  • Coquelet, C., Nguyen H.D., Chareton, A., Baba-Ahmed, A., Richon, D., 2003a. Vapour-liquid equilibrium data for the difluoromethane+1,1,1,2,3,3,3-heptafluoropropane system at temperatures from 283.20 to 343.38 K and pressures up to 4.5 MPa. Int. J. Ref., 26(5):559–565. [doi:10.1016/S0140-7007(02)00164-0]

    Article  Google Scholar 

  • Coquelet, C., Chareton, A., Valtz, A., Baba-Ahmed, A., Richon, D., 2003b. Vapor-liquid equilibrium data for the difluoromethane+propane system at temperatures from 294.83 to 343.26 K and pressures up to 5.4 MPa. J. Chem. Eng. Data, 48(2):317–323. [doi:10.1021/je020115d]

    Article  Google Scholar 

  • Coquelet, C., Chareton, A., Richon, D., 2004. Vapour-liquid equilibrium measurements and correlation of the difluoromethane (R32)+propane (R290)+1,1,1,2,3,3,3-heptafluoropropane (R227ca) ternary mixture at temperatures from 269.85 to 328.35 K. Fluid Phase Equilib., 218(2):209–214. [doi:10.1016/j.fluid.2003.12.009]

    Article  Google Scholar 

  • Coquelet, C., Valtz, A., Richon, D., 2005. Vapour-liquid equilibrium data for the difluoromethane (R32)+dimethyl ether (DME) system at temperatures from 283.03 to 363.21 K and pressures up to 5.5 MPa. Fluid Phase Equilib., 232(1–2):44–49. [doi:10.1016/j.fluid.2005.01.001]

    Article  Google Scholar 

  • Fontalba, F., Richon, D., Renon, H., 1984. Simultaneous determination of PVT and VLE data of binary mixtures up to 45 MPa and 433 K: A new apparatus without phase sampling and analysis. Rev. Sci. Instrum., 55(5):944–951. [doi:10.1063/1.1137870]

    Article  Google Scholar 

  • Galicia-Luna, L.A., Richon, D., Renon, H., 1994. New loading technique for a vibrating tube densimeter and measurements of liquid densities up to 39.5 MPa for binary and ternary mixtures of the carbon dioxide-methanol-propane system. J. Chem. Eng. Data, 39(3):424–431. [doi:10.1021/je00015a005]

    Article  Google Scholar 

  • Gmehling, J., Menke, J., Krafczyk, J., Fischer, K., 1994. Azeotropic Data Part I (1st Ed.). VCH Publishers, New York, USA.

    Google Scholar 

  • Guilbot, P., Valtz, A., Legendre, H., Richon, D., 2000. Rapid on line sampler-injector: A reliable tool for HT-HP sampling and on line GC analysis. Analusis, 28(5):426–431. [doi:10.1051/analusis:2000128]

    Article  Google Scholar 

  • Heidemann, R.A., Khalil, A.M., 1980. The calculation of critical points. AIChE J., 26(5):769–779. [doi:10.1002/aic.690260510]

    Article  MathSciNet  Google Scholar 

  • Huron, M.J., Vidal, J., 1979. New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non ideal mixtures. Fluid Phase Equilib., 3(4):255–271. [doi:10.1016/0378-3812(79)80001-1]

    Article  Google Scholar 

  • Laugier, S., Richon, D., 1986. New apparatus to perform fast determinations of mixture vapor-liquid equilibria up to 10 MPa and 423 K. Rev. Sci. Instrum., 57(3):469–472. [doi:10.1063/1.1138909]

    Article  Google Scholar 

  • Laugier, S., Richon, D., 2003. Use of artificial neural networks for calculating derived thermodynamic quantities from volumetric property data. Fluid Phase Equilib., 210(2):247–255. [doi:10.1016/S0378-3812(03)00172-9]

    Article  Google Scholar 

  • Legret, D., Desteve, J., Richon, D., Renon, H., 1983. Vapor-liquid equilibrium constants at infinite dilution determined by a gas stripping method: ethane, propane, n-butane, n-pentane in the methane-n-decane system. AIChE J., 29(1):137–144. [doi:10.1002/aic.690290119]

    Article  Google Scholar 

  • Mathias, P.M., Copeman, T.W., 1983. Extension of the Peng-Robinson equation of state to complex mixtures: evaluation of various forms of the local composition concept. Fluid Phase Equilib., 13(1):91–108. [doi:10.1016/0378-3812(83)80084-3]

    Article  Google Scholar 

  • Meskel-Lesavre, M., Richon, D., Renon, H., 1981. A new variable volume cell for determining vapor-liquid equilibria and saturated liquid molar volume by the static method. Ind. Eng. Chem. Fundam., 20(3):284–289. [doi:10.1021/i100003a017]

    Article  Google Scholar 

  • Michelsen, M.L., 1990. A modified Huron-Vidal mixing rules for cubic equations of state. Fluid Phase Equilib., 60(1–2):213–219. [doi:10.1016/0378-3812(90)85053-D]

    Article  Google Scholar 

  • Michelsen, M.L., Heidemann, R.A., 1981. Calculation of critical points from a two constant equations of state. AIChE J., 27(3):521–523. [doi:10.1002/aic.690270326]

    Article  Google Scholar 

  • Peng, D.Y., Robinson, D.B., 1976. A new two parameters equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1):59–64. [doi:10.1021/i160057a011]

    Article  Google Scholar 

  • Redlich, O., Kwong, J.N.S., 1949. On the thermodynamics of solutions. V. An equation of state. fugacities of gaseous solutions. Chem. Rev., 44(1):233–244. [doi:10.1021/cr60137a013]

    Article  Google Scholar 

  • Renon, H., Prausnitz, J.M., 1968. Local composition in thermodynamic excess function for liquid mixtures. AIChE J., 14(1):135–144. [doi:10.1002/aic.690140124]

    Article  Google Scholar 

  • Rivollet, F., Chapoy, A., Coquelet, C., Richon, D., 2004. Vapor-liquid equilibrium data for the carbon dioxide (CO2) +difluoromethane (R32) system at temperatures from 283.12 to 343.25 K and pressures up to 7.46 MPa. Fluid Phase Equilib., 218(1):95–101. [doi:10.1016/j.fluid.2003.12.002]

    Article  Google Scholar 

  • Scalabrin, G., Piazza, L., Richon, D., 2002. An equation of state for R227ea from density data through a new extended corresponding states-neural network technique. Fluid Phase Equilib., 199(1–2):33–51. [doi:10.1016/S0378-3812(02)00005-5]

    Article  Google Scholar 

  • Scalabrin, G., Marchi, P., Stringari, P., Richon, D., 2006a. An extended equation of state modeling method. I. Pure fluids. Int. J. Thermophysics, 27(5):1281–1318. [doi:10.1007/s10765-006-0111-9]

    Article  Google Scholar 

  • Scalabrin, G., Marchi, P., Stringari, P., Richon, D., 2006b. An extended equation of state modeling method. II. Mixtures. Int. J. Thermophysics, 27(5):1319–1353. [doi:10.1007/s10765-006-0112-8]

    Article  Google Scholar 

  • Stockfleth, R., Dohrn, R., 1998. An algorithm for calculating critical points in multicomponent mixtures which can be easily implemented in existing programs to calculate phase equilibria. Fluid Phase Equilib., 145(1):43–52. [doi:10.1016/S0378-3812(97)00225-2]

    Article  Google Scholar 

  • Valtz, A., Coquelet, C., Baba-Ahmed, A., Richon, D., 2002. Vapor-liquid equilibrium data for the propane+1,1,1,2,3,3,3-heptafluoropropane (R227ea) system at temperatures from 293.16 to 353.18 K and pressures up to 3.4 MPa. Fluid Phase Equilib., 202(1):29–47. [doi:10.1016/S0378-3812(02)00056-0]

    Article  Google Scholar 

  • Valtz, A., Coquelet, C., Baba-Ahmed, A., Richon, D., 2003. Vapor-liquid equilibrium data for the CO2+1,1,1,2,3,3,3-heptafluoropropane (R227ea) system at temperatures from 276.01 to 367.30 K and pressures up to 7.4 MPa. Fluid Phase Equilib., 207(1–2):53–67. [doi:10.1016/S0378-3812(02)00326-6]

    Article  Google Scholar 

  • Valtz, A., Coquelet, C., Richon, D., 2004a. Vapor-liquid equilibrium data for the sulfur dioxide (SO2)+difluoromethane (R32) system at temperatures from 288.07 to 403.16 K and pressures up to 7.31 MPa. Int. J. Thermophysics, 25(6):1695–1711. [doi:10.1007/s10765-004-7730-9]

    Article  Google Scholar 

  • Valtz, A., Coquelet, C., Richon, D., 2004b. Vapor-liquid equilibrium data for the sulfur dioxide (SO2)+1,1,1,2,3,3,3-heptafluoropropane (R227ea) system at temperatures from 288.07 to 403.19 K and pressures up to 5.38 MPa. Representation of the critical point and azeotrope temperature dependence. Fluid Phase Equilib., 220(1):75–82. [doi:10.1016/j.fluid.2004.02.016]

    Article  Google Scholar 

  • Valtz, A., Giequel, L., Coquelet, C., Richon, D., 2005. Vapour-liquid equilibrium data for the 1,1,1,2 tetrafluoroethane (R134a)+dimethyl ether (DME) system at temperatures from 293.18 to 358.15 K and pressures up to 2.9442 MPa. Fluid Phase Equilib., 230(1–2):184–191. [doi:10.1016/j.fluid.2005.01.001]

    Article  Google Scholar 

  • Wong, D.S.H., Sandler, S.I., 1992. A theoretically correct mixing rule for cubic equation of state. AIChE J., 38(5):671–680. [doi:10.1002/aic.590380505]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coquelet, C., Richon, D. Needs of thermodynamic properties measurements and modeling in the frame of new regulations on refrigerants. J. Zhejiang Univ. - Sci. A 8, 724–733 (2007). https://doi.org/10.1631/jzus.2007.A0724

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.A0724

Key words

CLC number

Navigation