Skip to main content
Log in

Rheology control and 3D concrete printing with fly ash-based aqueous nano-silica enhanced alkali-activated binders

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Efficient alkali-activated binder pastes of slag and fly ash-based aqueous nano-silica (FABANS) that provide enhanced strength are used for developing extrusion-based 3D printable concretes. The binder pastes of slag made with FABANS are not suitable for printing due to low yield stress and insufficient thixotropic buildup. Rheology control for enhancing the yield stress and thixotropic buildup is evaluated using bentonite clay and carboxymethyl cellulose (CMC). There is a synergistic enhancement in yield stress and thixotropic buildup provided by the combined use of bentonite and CMC that provides improved printability and buildability. Very rapid increase in yield stress with excess clay content in the presence of CMC, however, produces choking of flow and printability loss. Excess CMC results in a Maxwell-type behavior causing shape instability due to continuous relaxation under stress. The proportion of CMC and clay that provides the required thixotropic buildup for buildability is established. Printability and buildability of concrete mixture made with binder paste of FABANS with the proportion of rheology modifiers is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Perrot A, Rangeard D, Pierre A (2016) Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct Mater et Constr 49:1213–1220. https://doi.org/10.1617/s11527-015-0571-0

    Article  Google Scholar 

  2. Zhang Y, Zhang Y, She W et al (2019) Rheological and harden properties of the high-thixotropy 3D printing concrete. Constr Build Mater 201:278–285. https://doi.org/10.1016/j.conbuildmat.2018.12.061

    Article  Google Scholar 

  3. Nerella VN, Mechtcherine V (2019) Studying the printability of fresh concrete for formwork-free concrete onsite 3D printing technology (CONPrint3D). 3D concrete printing technology. Elsevier, pp 333–347. https://doi.org/10.1016/B978-0-12-815481-6.00016-6

    Chapter  Google Scholar 

  4. Kondepudi K, Subramaniam KVL (2021) Advances in rheology and an Extrusion-based 3D printing performance of alkali-activated binders. ACI SP 118(06):87–96. https://doi.org/10.14359/51734387

    Article  Google Scholar 

  5. Mirmohamadsadeghi S, Karimi K (2020) Recovery of silica from rice straw and husk. Current developments in biotechnology and bioengineering. Elsevier, pp 411–433. https://doi.org/10.1016/B978-0-444-64321-6.00021-5

    Chapter  Google Scholar 

  6. Moraes JCB, Font A, Soriano L et al (2018) New use of sugar cane straw ash in alkali-activated materials: a silica source for the preparation of the alkaline activator. Constr Build Mater 171:611–621. https://doi.org/10.1016/j.conbuildmat.2018.03.230

    Article  Google Scholar 

  7. Abdel-Gawwad HA, Mohammed MS, Zakey SE (2020) Preparation, performance, and stability of alkali-activated-concrete waste-lead- bearing sludge composites. J Clean Prod 259:120924. https://doi.org/10.1016/j.jclepro.2020.120924

    Article  Google Scholar 

  8. Lazaro A, Brouwers HJH, Quercia G, Geus JW (2012) The properties of amorphous nano-silica synthesized by the dissolution of olivine. Chem Eng J 211–212:112–121. https://doi.org/10.1016/j.cej.2012.09.042

    Article  Google Scholar 

  9. Gao X, Yu QL, Lazaro A, Brouwers HJH (2017) Investigation on a green olivine nano-silica source based activator in alkali activated slag-fly ash blends: reaction kinetics, gel structure and carbon footprint. Cem Concr Res 100:129–139. https://doi.org/10.1016/j.cemconres.2017.06.007

    Article  Google Scholar 

  10. Gomonsirisuk K, Thavorniti P (2019) Use of water glass from rice husk and Bagasse ashes in the preparation of fly ash based Geopolymer. Key Eng Mater 798:364–369. https://doi.org/10.4028/www.scientific.net/KEM.798.364

    Article  Google Scholar 

  11. Torres-Carrasco M, Tognonvi MT, Tagnit-Hamou A, Puertas F (2015) Durability of alkali-activated slag concretes prepared using waste glass as alternative activator. ACI Mater J. https://doi.org/10.14359/51687903

    Article  Google Scholar 

  12. Gadkar A, Subramaniam KVL (2019) An evaluation of yield and Maxwell fluid behaviors of fly ash suspensions in alkali-silicate solutions. Mater Structur Mater et Constr 52:117. https://doi.org/10.1617/s11527-019-1429-7

    Article  Google Scholar 

  13. Kondepudi K, Subramaniam KVL (2022) Critical evaluation of rheological behaviour of low-calcium fly ash geopolymer pastes. Adv Cem Res 34(3):109–119. https://doi.org/10.1680/jadcr.20.00043

    Article  Google Scholar 

  14. Kamakshi TA, Reddy KC, Subramaniam KVL (2022) Studies on rheology and fresh state behavior of fly ash-slag geopolymer binders with silica. Mater Struct Mater et Constr 55:65. https://doi.org/10.1617/s11527-022-01908-w

    Article  Google Scholar 

  15. Kamakshi TA, Subramaniam KVL (2022) Developing printable fly ash–slag geopolymer binders with rheology modification. In: Buswell Richard, Blanco Ana, Cavalaro Sergio, Kinnell Peter (eds) Third RILEM International conference on concrete and digital fabrication: digital concrete 2022. Springer International Publishing, Cham, pp 93–98. https://doi.org/10.1007/978-3-031-06116-5_14

    Chapter  Google Scholar 

  16. Kondepudi K, Subramaniam KVL (2021) Extrusion-based three-dimensional printing performance of alkali-activated binders. ACI Mater J 118:87–96. https://doi.org/10.14359/51733107

    Article  Google Scholar 

  17. Ruiz-Santaquiteria C, Skibsted J, Fernández-Jiménez A, Palomo A (2012) Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cem Concr Res 42:1242–1251. https://doi.org/10.1016/j.cemconres.2012.05.019

    Article  Google Scholar 

  18. Chen Y, Chaves Figueiredo S, Li Z et al (2020) Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture. Cem Concr Res 132:106040. https://doi.org/10.1016/j.cemconres.2020.106040

    Article  Google Scholar 

  19. Kawashima S, Chaouche M, Corr DJ, Shah SP (2014) Influence of purified attapulgite clays on the adhesive properties of cement pastes as measured by the tack test. Cem Concr Compos 48:35–41. https://doi.org/10.1016/j.cemconcomp.2014.01.005

    Article  Google Scholar 

  20. Liu C, li, Zheng S li, Ma S hua, et al (2018) A novel process to enrich alumina and prepare silica nanoparticles from high-alumina fly ash. Fuel Process Technol 173:40–47. https://doi.org/10.1016/j.fuproc.2018.01.007

    Article  Google Scholar 

  21. Kamakshi TA, Ramagiri KK, Subramaniam KVL. Forthcoming “fly ash-based aqueous nano-silica enhanced activator for efficient room-temperature cured concrete with two-part alkali-activated binders”. Journal of Materials in Civil Engineering. https://doi.org/10.1061/JMCEE7/MTENG-17580.

  22. IS: 3812 (Part-1) (2003) Pulverized fuel ash—specification. Part 1: for use as Pozzolana in cement, Cement Mortar and Concrete (Second Revision). Bureau of Indian Standards 1–14

  23. IS:12089–1987: Specification for granulated slag for the manufacture of Portland slag cement. Bureau of Indian Standards, New Delhi 1–14

  24. Panda B, Ruan S, Unluer C, Tan MJ (2019) Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay. Compos Part B Eng 165:75–83. https://doi.org/10.1016/j.compositesb.2018.11.109

    Article  Google Scholar 

  25. Panda B, Ruan S, Unluer C, Tan MJ (2020) Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing. Compos B Eng 186:107826. https://doi.org/10.1016/j.compositesb.2020.107826

    Article  Google Scholar 

  26. Panda B, Unluer C, Tan MJ (2019) Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing. Compos B Eng 176:107290. https://doi.org/10.1016/j.compositesb.2019.107290

    Article  Google Scholar 

  27. Kondepudi K, Subramaniam KVL, Nematollahi B et al (2022) Study of particle packing and paste rheology in alkali activated mixtures to meet the rheology demands of 3D concrete printing. Cem Concr Compos 131:104581. https://doi.org/10.1016/j.cemconcomp.2022.104581

    Article  Google Scholar 

  28. Kondepudi K, Subramaniam KVL (2021) Formulation of alkali-activated fly ash-slag binders for 3D concrete printing. Cem Concr Compos 119:103983. https://doi.org/10.1016/j.cemconcomp.2021.103983

    Article  Google Scholar 

  29. Kondepudi K, Subramaniam KVL (2021) Extrusion-based three-dimensional printing performance of alkali-activated binders. ACI Mater J 118:87–96. https://doi.org/10.14359/51733107

    Article  Google Scholar 

  30. Singh GVPB, Subrahmanyam C, Subramaniam KVL (2018) Dissolution of the glassy phase in low-calcium fly ash during alkaline activation. Adv Cem Res 30:313–322. https://doi.org/10.1680/jadcr.17.00170

    Article  Google Scholar 

  31. Bhagath Singh GVP, Subramaniam KVL (2017) Evaluation of sodium content and sodium hydroxide molarity on compressive strength of alkali activated low-calcium fly ash. Cem Concr Compos 81:122–132. https://doi.org/10.1016/j.cemconcomp.2017.05.001

    Article  Google Scholar 

  32. Haist M, Link J, Nicia D et al (2020) Interlaboratory study on rheological properties of cement pastes and reference substances: comparability of measurements performed with different rheometers and measurement geometries. Mater Structur Mater et Constr 53:92. https://doi.org/10.1617/s11527-020-01477-w

    Article  Google Scholar 

  33. Saak AW, Jennings HM, Shah SP (2001) The influence of wall slip on yield stress and viscoelastic measurements of cement paste. Cem Concr Res 31:205–212. https://doi.org/10.1016/S0008-8846(00)00440-3

    Article  Google Scholar 

  34. Feys D, Keller H, El Cheikh K et al (2023) RILEM TC 266-MRP: round-robin rheological tests on high performance mortar and concrete with adapted rheology—a comprehensive flow curve analysis. Mater Structur Mater et Constr 56:105. https://doi.org/10.1617/s11527-023-02176-y

    Article  Google Scholar 

  35. Kondepudi K, Subramaniam KVL (2019) Rheological characterization of low-calcium fly ash suspensions in alkaline silicate colloidal solutions for geopolymer concrete production. J Clean Prod 234:690–701. https://doi.org/10.1016/j.jclepro.2019.06.124

    Article  Google Scholar 

  36. Perrot A, Mélinge Y, Rangeard D et al (2012) Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate. Rheol Acta 51:743–754. https://doi.org/10.1007/s00397-012-0638-6

    Article  Google Scholar 

  37. Perrot A, Rangeard D, Nerella VN, Mechtcherine V (2018) Extrusion of cement-based materials—an overview. RILEM Tech Lett 3:91–97. https://doi.org/10.21809/rilemtechlett.2018.75

    Article  Google Scholar 

  38. Kashani A, Provis JL, Qiao GG, Van Deventer JSJ (2014) The interrelationship between surface chemistry and rheology in alkali activated slag paste. Constr Build Mater 65:583–591. https://doi.org/10.1016/j.conbuildmat.2014.04.127

    Article  Google Scholar 

  39. Roussel N, Ovarlez G, Garrault S, Brumaud C (2012) The origins of thixotropy of fresh cement pastes. Cem Concr Res 42:148–157. https://doi.org/10.1016/j.cemconres.2011.09.004

    Article  Google Scholar 

  40. Reddy KC, Gudur C, Subramaniam KVL (2020) Study on the influences of silica and sodium in the alkali-activation of ground granulated blast furnace slag. Constr Build Mater 257:119514. https://doi.org/10.1016/j.conbuildmat.2020.119514

    Article  Google Scholar 

  41. Roussel N (2018) Rheological requirements for printable concretes. Cem Concr Res 112:76–85. https://doi.org/10.1016/j.cemconres.2018.04.005

    Article  Google Scholar 

  42. Zhang Y, Zhang Y, Liu G et al (2018) Fresh properties of a novel 3D printing concrete ink. Constr Build Mater 174:263–271. https://doi.org/10.1016/j.conbuildmat.2018.04.115

    Article  Google Scholar 

  43. Kruger J, Zeranka S, van Zijl G (2019) An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete. Constr Build Mater 224:372–386. https://doi.org/10.1016/j.conbuildmat.2019.07.078

    Article  Google Scholar 

  44. Le TT, Austin SA, Lim S et al (2012) Mix design and fresh properties for high-performance printing concrete. Mater Struct Mater et Constr 45:1221–1232. https://doi.org/10.1617/s11527-012-9828-z

    Article  Google Scholar 

  45. Gadkar A, Subramaniam KVL (2021) Self-leveling geopolymer concrete using alkali-activated fly ash. ACI Mater J 118:21–30. https://doi.org/10.14359/51729324

    Article  Google Scholar 

  46. Reddy KC, Subramaniam KVL (2021) Investigation on the roles of solution-based alkali and silica in activated low-calcium fly ash and slag blends. Cem Concr Compos 123:104175. https://doi.org/10.1016/j.cemconcomp.2021.104175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolluru V. L. Subramaniam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamakshi, T.A., Subramaniam, K.V.L. Rheology control and 3D concrete printing with fly ash-based aqueous nano-silica enhanced alkali-activated binders. Mater Struct 57, 106 (2024). https://doi.org/10.1617/s11527-024-02385-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-024-02385-z

Keywords

Navigation