Skip to main content
Log in

A multianalytical approach to understand the relationship between ASR mitigation mechanisms of class F fly ash in highly reactive systems

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Over the years, the use of class F fly ash has been proven to be an efficient strategy to mitigate alkali–silica reaction (ASR) in concrete mixtures containing reactive aggregates. Prior research has identified the major mechanisms driving the mitigating action of fly ash to be, among others, alkali dilution and reduction in pore solution alkalinity due to the pozzolanic activity of fly ash. In this study, the relationship between these different mechanisms, their relative prevalence during the course of the ASR reaction, and their influence on the pore solution chemistry and nature of ASR products were explored in detail in a highly reactive model mortar system using a multi-analytical approach. Addition of fly ash to the mortar resulted in generation of fewer ASR products of similar nature than those produced in a control system. Raman spectroscopic analysis revealed the presence of aluminate monomer at the mouth of cracks in the aggregates, confirming that, in addition to the above-mentioned mechanisms, passivation of silica sites on the surface of aggregates due to the presence of aluminum in the pore solution was also a contributing factor to how fly ash mitigates ASR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: FHWA

Fig. 2

Source: FHWA

Fig. 3

Source: FHWA

Fig. 4
Fig. 5

Source: FHWA

Fig. 6

Source: FHWA

Fig. 7

Source: FHWA

Fig. 8
Fig. 9

Source: FHWA

Fig. 10

Source: FHWA. (Colour figure online)

Fig. 11

Source: FHWA

Fig. 12

Source: FHWA

Fig. 13
Fig. 14

(Taken from reference [18])

Similar content being viewed by others

References

  1. Hong SY, Glasser FP (1999) Alkali binding in cement pastes: part I. The CSH phase. Cem Concr Res 29(12):1893–1903. https://doi.org/10.1016/s0008-8846(99)00187-8

    Article  Google Scholar 

  2. Hong SY, Glasser FP (2002) Alkali sorption by CSH and CASH gels: part II. Role of alumina. Cem Concr Res 32(7):1101–1111. https://doi.org/10.1016/s0008-8846(02)00753-6

    Article  Google Scholar 

  3. Thomas M (2011) The effect of supplementary cementing materials on alkali–silica reaction: a review. Cem Concr Res 41(12):1224–1231. https://doi.org/10.1016/j.cemconres.2010.11.003

    Article  Google Scholar 

  4. Shafaatian SM, Akhavan A, Maraghechi H, Rajabipour F (2013) How does fly ash mitigate alkali–silica reaction (ASR) in accelerated mortar bar test (ASTM C1567). Cem Concr Compos 37:143–153. https://doi.org/10.1016/j.cemconcomp.2012.11.004

    Article  Google Scholar 

  5. Tapas MJ (2020) Role of supplementary cementitious materials in mitigating alkali–silica reaction. PhD diss.

  6. Moser RD, Jayapalan AR, Garas VY, Kurtis KE (2010) Assessment of binary and ternary blends of metakaolin and class C fly ash for alkali–silica reaction mitigation in concrete. Cem Concr Res 40(12):1664–1672. https://doi.org/10.1016/j.cemconres.2010.08.006

    Article  Google Scholar 

  7. Warner SJ (2012). The role of alumina in the mitigation of alkali–silica reaction. Masters Thesis

  8. Shi Z, Ma B, Lothenbach B (2021) Effect of Al on the formation and structure of alkali–silica reaction products. Cem Concr Res 140:106311. https://doi.org/10.1016/j.cemconres.2020.106311

    Article  Google Scholar 

  9. Lothenbach B, Scrivener K, Hooton RD (2011) Supplementary cementitious materials. Cem Concr Res 41(12):1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001

    Article  Google Scholar 

  10. L’Hôpital E, Lothenbach B, Scrivener K, Kulik DA (2016) Alkali uptake in calcium alumina silicate hydrate (CASH). Cem Concr Res 85:122–136. https://doi.org/10.1016/j.cemconres.2016.03.009

    Article  Google Scholar 

  11. Chappex T, Scrivener K (2012a) Alkali fixation of C–S–H in blended cement pastes and its relation to alkali silica reaction. Cem Concr Res 42(8):1049–1054. https://doi.org/10.1016/j.cemconres.2012.03.010

    Article  Google Scholar 

  12. Chappex T, Scrivener KL (2012b) The influence of aluminium on the dissolution of amorphous silica and its relation to alkali silica reaction. Cem Concr Res 42(12):1645–1649. https://doi.org/10.1016/j.cemconres.2012.09.009

    Article  Google Scholar 

  13. Leemann A, Bagheri M, Lothenbach B, Scrivener K, Barbotin S, Boehm-Courjault E, Geng G, Dähn R, Shi Z, Shakoorioskooie M, Griffa M, Zboray R, Lura P, Gallyamov E, Rezakhani R, Molinari JF (2021) Alkali–silica reaction—a multidisciplinary approach. RILEM Tech Lett 6:169–187. https://doi.org/10.21809/rilemtechlett.2021.151

    Article  Google Scholar 

  14. Shi Z, Lothenbach B (2022) Role of aluminum and lithium in mitigating alkali–silica reaction–a review. Front Mater 8:596. https://doi.org/10.3389/fmats.2021.796396

    Article  Google Scholar 

  15. Leemann A, Le Saout G, Winnefeld F, Rentsch D, Lothenbach B (2011) Alkali–silica reaction: the influence of calcium on silica dissolution and the formation of reaction products. J Am Ceram Soc 94(4):1243–1249. https://doi.org/10.1111/j.1551-2916.2010.04202.x

    Article  Google Scholar 

  16. Kim T, Olek J, Jeong H (2015) Alkali–silica reaction: kinetics of chemistry of pore solution and calcium hydroxide content in cementitious system. Cem Concr Res 7:36–45. https://doi.org/10.1016/j.cemconres.2015.01.017

    Article  Google Scholar 

  17. Visser JHM (2018) Fundamentals of alkali–silica gel formation and swelling: condensation under influence of dissolved salts. Cem Concr Res 105:18–30. https://doi.org/10.1016/j.cemconres.2017.11.006

    Article  Google Scholar 

  18. Balachandran C, Muñoz JF, Peethamparan S, Arnold TS (2023) Alkali–silica reaction and its dynamic relationship with cement pore solution in highly reactive systems. Constr Build Mater 362:129702. https://doi.org/10.1016/j.conbuildmat.2022.129702

    Article  Google Scholar 

  19. Rajabipour F, Giannini E, Dunant C, Ideker JH, Thomas MD (2015) Alkali–silica reaction: current understanding of the reaction mechanisms and the knowledge gaps. Cem Concr Res 76:130–146. https://doi.org/10.1016/j.cemconres.2015.05.024

    Article  Google Scholar 

  20. Saha AK, Khan MNN, Sarker PK, Shaikh FA, Pramanik A (2018) The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: a critical review. Constr Build Mater 171:743–758. https://doi.org/10.1016/j.conbuildmat.2018.03.183

    Article  Google Scholar 

  21. Vollpracht A, Lothenbach B, Snellings R, Haufe J (2016) The pore solution of blended cements: a review. Mater Struct 49(8):3341–3367. https://doi.org/10.1617/s11527-015-0724-1

    Article  Google Scholar 

  22. Muñoz JF, Balachandran C, Lichtenwalner RL, Li Z, Arnold TS (2023) Optimization of parameters of the new turner-Fairbank alkali–silica reactivity susceptibility test (T-Fast). J Test Eval. https://doi.org/10.1520/jte20220033

    Article  Google Scholar 

  23. ASTM C1260-14 (2014) Standard test method for potential alkali reactivity of aggregates (mortar-bar method). ASTM International, West Conshohocken

    Google Scholar 

  24. ASTM C1293-20a (2020) Standard test method for determination of length change of concrete due to alkali–silica reaction. ASTM International, West Conshohocken

    Google Scholar 

  25. Barneyback RS Jr, Diamond S (1981) Expression and analysis of pore fluids from hardened cement pastes and mortars. Cem Concr Res 11(2):279–285. https://doi.org/10.1016/0008-8846(81)90069-7

    Article  Google Scholar 

  26. Montanari L, Tanesi J, Kim H, Ardani A (2020) Influence of loading pressure and sample preparation on ionic concentration and resistivity of pore solution expressed from concrete samples. J Test Eval. https://doi.org/10.1520/jte20190765

    Article  Google Scholar 

  27. Kim T, Olek J (2012) Effects of sample preparation and interpretation of thermogravimetric curves on calcium hydroxide in hydrated pastes and mortars. Transp Res Rec J Transp Res Board 2290(1):10–18. https://doi.org/10.3141/2290-02

    Article  Google Scholar 

  28. Balachandran C, Muñoz JF, Arnold T (2017) Characterization of alkali silica reaction gels using Raman spectroscopy. Cem Concr Res 92:66–74. https://doi.org/10.1016/j.cemconres.2016.11.018

    Article  Google Scholar 

  29. Munoz JF, Balachandran C, Arnold TS (2021) New chemical reactivity index to assess alkali silica reactivity. ASCE J Mater Civ Eng. https://doi.org/10.1061/(asce)mt.1943-5533.0003640

    Article  Google Scholar 

  30. Balachandran C, Munoz JF, Arnold T (2020) Applying Raman spectroscopy to study alkali–silica reaction gels, Report No. FHWA-HRT-20-042. Federal Highway Administration, Washington

    Google Scholar 

  31. Chancey RT, Stutzman PE, Juenger MCG, Fowler DW (2010) Comprehensive phase characterization of crystalline and amorphous phases of a class F fly ash. Cem Concr Res 40:146–156. https://doi.org/10.1016/j.cemconres.2009.08.029

    Article  Google Scholar 

  32. Stutzman PE, Feng P, Bullard JW (2016) Phase analysis of Portland cement by combined quantitative X-ray powder diffraction and scanning electron microscopy. J Res Nat Inst Stand Technol 121:47. https://doi.org/10.6028/jres.121.004

    Article  Google Scholar 

  33. Stutzman PE, Lespinasse G, Leigh S (2008) Compositional analysis and certification of NIST reference material clinker 2686a. NIST Tech Note 1602:48

    Google Scholar 

  34. Snyder KA, Stutzman PE (2013) Hydrated phases in blended cement systems and hydrated phases in blended cement systems and synthetic saltstone grouts (No. NISTIR 7947). National Institute of Standards and Technology-US Department of Commerce, Gaithersburg. https://doi.org/10.6028/nist.ir.7947

    Book  Google Scholar 

  35. De La Varga I, Muñoz JF, Bentz DP, Spragg RP, Stutzman PE, Graybeal BA (2018) Grout-concrete interface bond performance: effect of interface moisture on the tensile bond strength and grout microstructure. Constr Build Mater 170:747–756. https://doi.org/10.1016/j.conbuildmat.2018.03.076

    Article  Google Scholar 

  36. Deschner F, Lothenbach B, Winnefeld F, Neubauer J (2013) Effect of temperature on the hydration of Portland cement blended with siliceous fly ash. Cem Concr Res 52:169–181. https://doi.org/10.1016/j.cemconres.2013.07.006

    Article  Google Scholar 

  37. Rothstein D, Thomas JJ, Christensen BJ, Jennings HM (2002) Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time. Cem Concr Res 32(10):1663–1671. https://doi.org/10.1016/s0008-8846(02)00855-4

    Article  Google Scholar 

  38. Rajabipour F, Maraghechi H, Fischer G (2010) Investigating the alkali–silica reaction of recycled glass aggregates in concrete materials. J Mater Civ Eng 22(12):1201–1208. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000126

    Article  Google Scholar 

  39. Liaudat J, Carol I, López CM, Leemann A (2019) ASR expansions at the level of a single glass-cement paste interface: experimental results and proposal of a reaction-expansion mechanism. Constr Build Mater 218:108–118. https://doi.org/10.1016/j.conbuildmat.2019.05.106

    Article  Google Scholar 

  40. Strack CM, Barnes E, Ramsey MA, Williams RK, Klaus KL, Moser RD (2020) Impact of aggregate mineralogy and exposure solution on alkali–silica reaction product composition and structure within accelerated test conditions. Constr Build Mater 240:117929. https://doi.org/10.1016/j.conbuildmat.2019.117929

    Article  Google Scholar 

  41. McMillan P (1984) Structural studies of silicate glasses and melts—applications and limitations of Raman spectroscopy. Am Mineral 69:622–644

    Google Scholar 

  42. Kamitsos EI, Kapoutsis JA, Jain H, Hsieh CH (1994) Vibrational study of the role of trivalent ions in sodium trisilicate glass. J Non-cryst Solids 171:31–45. https://doi.org/10.1016/0022-3093(94)90030-2

    Article  Google Scholar 

  43. Garbev K, Stemmermann P, Black L, Breen C, Yarwood J, Gasharova B (2007) Structural features of C–S–H (I) and its carbonation in air—a Raman spectroscopic study. Part I: fresh phases. J Am Ceram Soc 90(3):900–907. https://doi.org/10.1111/j.1551-2916.2006.01428.x

    Article  Google Scholar 

  44. Black L, Breen C, Yarwood J, Garbev K, Stemmermann P, Gasharova B (2007) Structural features of C–S–H (I) and its carbonation in air—a Raman spectroscopic study. Part II: carbonated phases. J Am Ceram Soc 90(3):908–917. https://doi.org/10.1111/j.1551-2916.2006.01429.x

    Article  Google Scholar 

  45. Matson DW, Sharma SK, Philpotts JA (1983) The structure of high-silica alkali–silicate glasses. A Raman spectroscopic investigation. J Non-cryst solids 58(2–3):323–352. https://doi.org/10.1016/0022-3093(83)90032-7

    Article  Google Scholar 

  46. McMillan PF, Remmele RL (1986) Hydroxyl sites in SiO2 glass: A note on infrared and Raman spectra. Am Mineral 71(5–6):772–778

    Google Scholar 

  47. Kirkpatrick RJ, Yarger JL, McMillan PF, Ping Y, Cong X (1997) Raman spectroscopy of CSH, tobermorite, and jennite. Adv Cem Based Mater 5(3–4):93–99. https://doi.org/10.1016/s1065-7355(97)00001-1

    Article  Google Scholar 

  48. Ling TC, Balachandran C, Munoz JF, Youtcheff J (2018) Chemical evolution of alkali–silicate reaction (ASR) products: a Raman spectroscopic investigation. Mater Struct 51(1):1–9. https://doi.org/10.1617/s11527-018-1151-x

    Article  Google Scholar 

  49. Hou X, Struble LJ, Kirkpatrick RJ (2004) Formation of ASR gel and the roles of CSH and portlandite. Cem Concr Res 34(9):1683–1696. https://doi.org/10.1016/j.cemconres.2004.03.026

    Article  Google Scholar 

  50. Maraghechi H, Fischer G, Rajabipour F (2012) The role of residual cracks on alkali silica reactivity of recycled glass aggregates. Cem Concr Res 34(1):41–47. https://doi.org/10.1016/j.cemconcomp.2011.07.004

    Article  Google Scholar 

  51. Kim T, Olek J (2014) Chemical sequence and kinetics of alkali–silica reaction part I. Experiments. J Am Ceram Soc 97(7):2195–2203. https://doi.org/10.1111/jace.12992

    Article  Google Scholar 

  52. Maraghechi H, Rajabipour F, Pantano CG, Burgos WD (2016) Effect of calcium on dissolution and precipitation reactions of amorphous silica at high alkalinity. Cem Concr Res 87:1–13. https://doi.org/10.1016/j.cemconres.2016.05.004

    Article  Google Scholar 

  53. Shi Z, Lothenbach B (2019) The role of calcium on the formation of alkali–silica reaction products. Cem Concr Res 126:105898. https://doi.org/10.1111/j.1551-2916.2010.04202.x

    Article  Google Scholar 

  54. Guo S, Dai Q, Si R (2019) Effect of calcium and lithium on alkali–silica reaction kinetics and phase development. Cem Concr Res 115:220–229. https://doi.org/10.1016/j.cemconres.2018.10.007

    Article  Google Scholar 

  55. Gout R, Pokrovski GS, Schott J, Zwick A (2000) Raman spectroscopic study of aluminum silicate complexes at 20 C in basic solutions. J Solution Chem 29(12):1173–1186. https://doi.org/10.1023/A:1026428027101

    Article  Google Scholar 

  56. Johnston CT, Agnew SF, Schoonover JR, Kenney JW, Page B, Osborn J, Corbin R (2002) Raman study of aluminum speciation in simulated alkaline nuclear waste. Environ Sci Technol 36(11):2451–2458. https://doi.org/10.1021/es011226k

    Article  Google Scholar 

  57. Mookherjee M, Keppler H, Manning CE (2014) Aluminum speciation in aqueous fluids at deep crustal pressure and temperature. Geochim Cosmochim Acta 133:128–141. https://doi.org/10.1016/j.gca.2014.02.016

    Article  Google Scholar 

  58. Iler RK (1973) Effect of adsorbed alumina on the solubility of amorphous silica in water. J Colloid Interface Sci 43(2):399–408. https://doi.org/10.1016/0021-9797(73)90386-x

    Article  Google Scholar 

  59. Bickmore BR, Nagy KL, Gray AK, Brinkerhoff AR (2006) The effect of Al (OH)4 on the dissolution rate of quartz. Geochim Cosmochim Acta 70(2):290–305. https://doi.org/10.1016/j.gca.2005.09.017

    Article  Google Scholar 

  60. Nicoleau L, Schreiner E, Nonat A (2014) Ion-specific effects influencing the dissolution of tricalcium silicate. Cem Concr Res 59:118–138. https://doi.org/10.1016/j.cemconres.2014.02.006

    Article  Google Scholar 

  61. Hay R, Ostertag CP (2019) On utilization and mechanisms of waste aluminium in mitigating alkali–silica reaction (ASR) in concrete. J Clean Prod 212:864–879. https://doi.org/10.1016/j.jclepro.2018.11.288

    Article  Google Scholar 

  62. Canham I, Page CL, Nixon PJ (1987) Aspects of the pore solution chemistry of blended cements related to the control of alkali silica reaction. Cem Concr Res 17(5):839–844. https://doi.org/10.1016/0008-8846(87)90046-9

    Article  Google Scholar 

  63. Shehata MH, Thomas MD, Bleszynski RF (1999) The effects of fly ash composition on the chemistry of pore solution in hydrated cement pastes. Cem Concr Res 29(12):1915–1920. https://doi.org/10.1016/s0008-8846(99)00190-8

    Article  Google Scholar 

  64. Kawabata Y, Yamada K (2015) Evaluation of alkalinity of pore solution based on the phase composition of cement hydrates with supplementary cementitious materials and its relation to suppressing ASR expansion. J Adv Concr Technol 13(11):538–553. https://doi.org/10.3151/jact.13.538

    Article  Google Scholar 

  65. Kawabata Y, Yamada K (2017) The mechanism of limited inhibition by fly ash on expansion due to alkali–silica reaction at the pessimum proportion. Cem Concr Res 92:1–15. https://doi.org/10.1016/j.cemconres.2016.11.002

    Article  Google Scholar 

  66. Hay R, Ostertag CP (2021) New insights into the role of fly ash in mitigating alkali–silica reaction (ASR) in concrete. Cem Concr Res 144:106440. https://doi.org/10.1016/j.cemconres.2021.106440

    Article  Google Scholar 

  67. Thomas M, Fournier B, Folliard K, Ideker J, Shehata M (2006) Test methods for evaluating preventive measures for controlling expansion due to alkali–silica reaction in concrete. Cem Concr Res 36(10):1842–1856. https://doi.org/10.1016/j.cemconres.2006.01.014

    Article  Google Scholar 

  68. Multon S, Cyr M, Sellier A, Diederich P, Petit L (2010) Effects of aggregate size and alkali content on ASR expansion. Cem Concr Res 40(4):508–516. https://doi.org/10.1016/j.cemconres.2009.08.002

    Article  Google Scholar 

  69. Lindgård J, Thomas MD, Sellevold EJ, Pedersen B, Andiç-Çakır Ö, Justnes H, Rønning TF (2013) Alkali–silica reaction (ASR)—performance testing: influence of specimen pre-treatment, exposure conditions and prism size on alkali leaching and prism expansion. Cem Concr Res 53:68–90. https://doi.org/10.1016/j.cemconres.2013.05.017

    Article  Google Scholar 

  70. Feng X, Thomas MDA, Bremner TW, Folliard KJ, Fournier B (2010) New observations on the mechanism of lithium nitrate against alkali silica reaction (ASR). Cem Concr Res 40(1):94–101. https://doi.org/10.1016/j.cemconres.2009.07.017

    Article  Google Scholar 

  71. Shin JH, Struble LJ, Kirkpatrick RJ (2015) Microstructural changes due to alkali–silica reaction during standard mortar test. Materials 8(12):8292–8303. https://doi.org/10.3390/ma8125450

    Article  Google Scholar 

  72. Leemann A, Münch B (2019) The addition of caesium to concrete with alkali–silica reaction: implications on product identification and recognition of the reaction sequence. Cem Concr Res 120:27–35. https://doi.org/10.1016/j.cemconres.2019.03.016

    Article  Google Scholar 

  73. Liaudat J (2018) Experimental and numerical study of the effect of stress on ASR expansions in concrete. PhD thesis, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya. https://doi.org/10.5821/dissertation-2117-121005

  74. Kim T, Alnahhal MF, Nguyen QD, Panchmatia P, Hajimohammadi A, Castel A (2019) Initial sequence for alkali–silica reaction: transport barrier and spatial distribution of reaction products. Cem Concr Compos 104:103378. https://doi.org/10.1016/j.cemconcomp.2019.103378

    Article  Google Scholar 

  75. Oey T, La Plante EC, Falzone G, Hsiao YH, Wada A, Monfardini L, Bauchy M, Bullard JW, Sant G (2020) Calcium nitrate: a chemical admixture to inhibit aggregate dissolution and mitigate expansion caused by alkali–silica reaction. Cem Concr Compos 110:103592. https://doi.org/10.1016/j.cemconcomp.2020.103592

    Article  Google Scholar 

  76. National Academies of Sciences, Engineering, and Medicine (2023) Alkali–silica reactivity potential and mitigation: test methods and state of practice. The National Academies Press, Washington. https://doi.org/10.17226/27435

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Freweini Zerai and Anant Shastry for their technical assistance. The authors would also like to thank Michael Praul for his review of the manuscript. This material is based upon work supported by the Federal Highway Administration under contract number DTFH61-17-D-00017. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Federal Highway Administration. Certain commercial equipment and software are identified to describe the subject adequately. Such identification does not imply recommendation or endorsement by FHWA or SES Group & Associates, nor does it imply that the equipment identified is necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandni Balachandran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balachandran, C., Muñoz, J.F., Peethamparan, S. et al. A multianalytical approach to understand the relationship between ASR mitigation mechanisms of class F fly ash in highly reactive systems. Mater Struct 57, 62 (2024). https://doi.org/10.1617/s11527-024-02342-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-024-02342-w

Keywords

Navigation