Skip to main content
Log in

A methodology for designing 3D printable mortar based on recycled sand

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper proposes a methodology for the mixture proportioning of 3D printable mortar containing recycled sand (RS), having similar fresh and hardened properties to a reference 3D printable mortar made with natural sand (NS). The methodology is based firstly on a fast and accurate characterization of the water absorption coefficient of the RS and secondly on the volume substitution of the NS by RS. This allows hardly changing the composition of the cement paste, slightly modifying the admixture dosage with a constant Weff/C ratio. The proposed methodology is applied to two different recycled sands. Results at the fresh state show that the structuration rates of recycled mortars are slightly lower than those of the reference mortar due to the slight increase in superplastizer content, but the close obtained values suggest that the Weff/C ratios are very similar in the three mortars. This result is confirmed by the porosity measurement on hardened mortars, which shows that the porosities of the cement pastes of the three mortars are almost identical. The compressive strength of recycled mortars is slightly lower than that of the reference mortar, which can be attributed to the lower intrinsic properties of RS compared to NS. This methodology enables the use of recycled sand as a sustainable alternative to natural sand in 3D printing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xiao J, Ma Z, Ding T (2016) Reclamation chain of waste concrete: A case study of Shanghai. Waste Manag 48(334):343. https://doi.org/10.1016/j.wasman.2015.09.018

    Article  Google Scholar 

  2. Bendixen M, Best J, Hackney C, Iversen L (2019) Time is running out for sand. Nature 571(7763):29–31. https://doi.org/10.1038/d41586-019-02042-4

    Article  Google Scholar 

  3. Peduzzi P (2014) Sand, rarer than one thinks. Environ Dev 11:208. https://doi.org/10.1016/j.envdev.2014.04.001

    Article  Google Scholar 

  4. Khoshnevis B (2004) Automated construction by contour crafting—related robotics and information technologies. Autom Constr 13(1):5–19. https://doi.org/10.1016/j.autcon.2003.08.012

    Article  Google Scholar 

  5. Alkhalidi A, Hatuqay D (2020) Energy efficient 3D printed buildings: material and techniques selection worldwide study. J. Build. Eng 30:101286. https://doi.org/10.1016/j.jobe.2020.101286

    Article  Google Scholar 

  6. Lim S, Buswell RA, Le TT, Austin SA, Gibb AGF, Thorpe T (2012) Developments in construction-scale additive manufacturing processes. Autom Constr 21:262–268. https://doi.org/10.1016/j.autcon.2011.06.010

    Article  Google Scholar 

  7. Roussel N (2018) Rheological requirements for printable concretes. Cem Concr Res 112:76–85. https://doi.org/10.1016/j.cemconres.2018.04.005

    Article  Google Scholar 

  8. Le TT, Austin SA, Lim S, Buswell RA, Gibb AGF, Thorpe T (2012) Mix design and fresh properties for high-performance printing concrete. Mater Struct 45(8):1221–1232. https://doi.org/10.1617/s11527-012-9828-z

    Article  Google Scholar 

  9. Jayathilakage Rajeev R, Sanjayan JG (2020) Yield stress criteria to assess the buildability of 3D concrete printing. Constr Build Mater 240:117989. https://doi.org/10.1016/j.conbuildmat.2019.117989

    Article  Google Scholar 

  10. Tay YWD, Qian Y, Tan MJ (2019) Printability region for 3D concrete printing using slump and slump flow test. Compos Part B Eng 174:106968. https://doi.org/10.1016/j.compositesb.2019.106968

    Article  Google Scholar 

  11. Roussel N (2006) A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cem Concr Res 36(10):1797–1806. https://doi.org/10.1016/j.cemconres.2006.05.025

    Article  Google Scholar 

  12. Perrot A, Rangeard D, Pierre A (2016) Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct 49(4):1213–1220. https://doi.org/10.1617/s11527-015-0571-0

    Article  Google Scholar 

  13. Mahaut F, Mokéddem S, Chateau X, Roussel N, Ovarlez G (2008) Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials. Cem Concr Res 38(11):1276–1285. https://doi.org/10.1016/j.cemconres.2008.06.001

    Article  Google Scholar 

  14. Nerella VN, Beigh MAB, Fataei S, Mechtcherine V (2019) Strain-based approach for measuring structural build-up of cement pastes in the context of digital construction. Cem Concr Res 115:530–544. https://doi.org/10.1016/j.cemconres.2018.08.003

    Article  Google Scholar 

  15. Estellé P, Michon C, Lanos C, Grossiord JL (2012) De l’intéret d’une caractérisation rhéologique empirique et relative. Rhéologie 21:10–35

    Google Scholar 

  16. Baz B, Remond S, Aouad G (2021) Influence of the mix composition on the thixotropy of 3D printable mortars. Mag Concr Res. https://doi.org/10.1680/jmacr.20.00193

    Article  Google Scholar 

  17. Zhao Z, Remond S, Damidot D, Xu W (2015) Influence of fine recycled concrete aggregates on the properties of mortars. Constr Build Mater 81:179–186. https://doi.org/10.1016/j.conbuildmat.2015.02.037

    Article  Google Scholar 

  18. de Juan MS, Gutiérrez PA (2009) Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr Build Mater 23(2):872–877. https://doi.org/10.1016/j.conbuildmat.2008.04.012

    Article  Google Scholar 

  19. Hou S, Xiao J, Duan Z, Ma G (2021) Fresh properties of 3D printed mortar with recycled powder. Constr Buil Mater 309:125186. https://doi.org/10.1016/j.conbuildmat.2021.125186

    Article  Google Scholar 

  20. Fan C-C, Huang R, Hwang H, Chao S-J (2016) Properties of concrete incorporating fine recycled aggregates from crushed concrete wastes. Constr Build Mater 112:708–715. https://doi.org/10.1016/j.conbuildmat.2016.02.154

    Article  Google Scholar 

  21. De Vlieger J, Boehme L, Blaakmeer J, Li J (2023) Buildability assessment of mortar with fine recycled aggregates for 3D printing. Constr Build Mater 367:130313. https://doi.org/10.1016/j.conbuildmat.2023.130313

    Article  Google Scholar 

  22. Neno C, de Brito J, Veiga R (2014) Using fine recycled concrete aggregate for mortar production. Mater Res 17:168–177. https://doi.org/10.1590/S1516-14392013005000164

    Article  Google Scholar 

  23. Le T, Rémond S, Le Saout G, Garcia-Diaz E (2016) Fresh behavior of mortar based on recycled sand–Influence of moisture condition. Constr Build Mater 106:35–42. https://doi.org/10.1016/j.conbuildmat.2015.12.071

    Article  Google Scholar 

  24. Zhang B et al (2023) Compressive behaviour and microstructures of concrete incorporating pretreated recycled powder/aggregates: The coupling effects of calcination and carbonization. J Build Eng 68:106158. https://doi.org/10.1016/j.jobe.2023.106158

    Article  Google Scholar 

  25. Carro-López D, González-Fonteboa B, de Brito J, Martínez-Abella F, González-Taboada I, Silva P (2015) Study of the rheology of self-compacting concrete with fine recycled concrete aggregates. Constr Build Mater 96:491–501. https://doi.org/10.1016/j.conbuildmat.2015.08.091

    Article  Google Scholar 

  26. Bouarroudj ME, Remond S, Michel F, Zhao Z, Bulteel D, Courard L (2019) Use of a reference limestone fine aggregate to study the fresh and hard behavior of mortar made with recycled fine aggregate. Mater Struct 52(1):18. https://doi.org/10.1617/s11527-019-1325-1

    Article  Google Scholar 

  27. Le MT, Tribout C, Escadeillas G (2019) Durability of mortars with leftover recycled sand. Constr Build Mater 215:391–400. https://doi.org/10.1016/j.conbuildmat.2019.04.179

    Article  Google Scholar 

  28. Zou S, Xiao J, Ding T, Duan Z, Zhang Q (2021) Printability and advantages of 3D printing mortar with 100% recycled sand. Constr Build Mater 273:121699. https://doi.org/10.1016/j.conbuildmat.2020.121699

    Article  Google Scholar 

  29. Ding T, Xiao J, Zou S, Wang Y (2020) Hardened properties of layered 3D printed concrete with recycled sand. Cem Concr Compos 113:103724. https://doi.org/10.1016/j.cemconcomp.2020.103724

    Article  Google Scholar 

  30. NF EN 197–1, Afnor EDITIONS. https://www.boutique.afnor.org/en-gb/standard/nf-en-1971/cement-part-1-composition-specifications-and-conformity-criteria-for-common/fa149898/1234

  31. NF EN 934–2+A1, Afnor EDITIONS. https://www.boutique.afnor.org/en-gb/standard/nf-en-9342-a1/admixtures-for-concrete-mortar-and-grout-part-2-concrete-admixtures-definit/fa178669/1262

  32. Krieger IM, Dougherty TJ (1959) A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3(1):137–152. https://doi.org/10.1122/1.548848

    Article  MATH  Google Scholar 

  33. Khalil N (2018) Formulation et caractérisation chimique et rhéologique des mortiers imprimables en 3D à base de mélanges de ciments Portland et sulfoalumineux Phdthesis. Ecole nationale supérieure Mines-Télécom, Lille Douai

    Google Scholar 

  34. Zhao Z, Remond S, Damidot D, Xu W (2013) Influence of hardened cement paste content on the water absorption of fine recycled concrete aggregates. J Sustain Cem Based Mater 2(34):186–203. https://doi.org/10.1080/21650373.2013.812942

    Article  Google Scholar 

  35. NF EN 1097–6, Afnor EDITIONS. https://www.boutique.afnor.org/en-gb/standard/nf-en-10976/tests-for-mechanical-and-physical-properties-of-aggregates-part-6-determina/fa163899/42536

  36. T. Le (2015) Influence de l’humidité des granulats de béton recyclé sur le comportement à l’état frais et durcissant des mortiers , These de doctorat, Lille 1, [En ligne]. Disponible sur: https://www.theses.fr/2015LIL10160

  37. IFSTTAR, (2011), IFSTTAR. Test Methode No.78, Tests on granulats in concrte: measurment of total water absorption of crushed sand, 2011.

  38. Maimouni H, Remond S, Huchet Richard F, Thiery V, Descantes Y (2018) Quantitative assessment of the saturation degree of model fine recycled concrete aggregates immersed in a filler or cement paste. Constr Build Mater 175:496–507. https://doi.org/10.1016/j.conbuildmat.2018.04.211

    Article  Google Scholar 

  39. NF EN 12350–5, Afnor EDITIONS. https://www.boutique.afnor.org/fr-fr/norme/nf-en-123505/essais-pour-beton-frais-partie-5-essai-detalement-a-la-table-a-choc/fa190561/83426

  40. NF EN ISO 17892–6, Afnor EDITIONS. https://www.boutique.afnor.org/fr-fr/norme/nf-en-iso-178926/reconnaissance-et-essais-geotechniques-essais-de-laboratoire-sur-les-sols-p/fa166643/82449

  41. Khalil N, Aouad G, El Cheikh K, Rémond S (2017) Constr Build Mater 157:382–391. https://doi.org/10.1016/j.conbuildmat.2017.09.109

    Article  Google Scholar 

  42. Baz B, Aouad G, Remond S (2020) Effect of the printing method and mortar’s workability on pull-out strength of 3D printed elements. Constr Build Mater 230:117002. https://doi.org/10.1016/j.conbuildmat.2019.117002

    Article  Google Scholar 

  43. F. Bester, M. van den Heever, J. Kruger, S. Zeranka, et G. van Zijl (2019), Benchmark Structures for 3d Concrete Printing.

  44. Nerella VN, Krause M, Mechtcherine V (2020) Direct printing test for buildability of 3D-printable concrete considering economic viability. Autom Constr 109:102986. https://doi.org/10.1016/j.autcon.2019.102986

    Article  Google Scholar 

  45. NF EN 196–1, Afnor EDITIONS. https://www.boutique.afnor.org/en-gb/standard/nf-en-1961/methods-of-testing-cement-part-1-determination-of-strength/fa184622/57803

  46. NF P18–459, Afnor EDITIONS. https://www.boutique.afnor.org/en-gb/standard/nf-p18459/concrete-testing-hardened-concrete-testing-porosity-and-density/fa160729/34961

  47. Baz B (2020) Influence of the fresh state properties of 3D printable concrete on the steel-concrete bonding and durability, phdthesis. Ecole nationale supérieure Mines-Télécom Lille Douai; Université de Balamand, Tripoli, Liban

    Google Scholar 

  48. Wangler T et al (2016) Lett 1:67–75. https://doi.org/10.21809/rilemtechlett.2016.16

    Article  Google Scholar 

  49. Lee GC, Choi HB (2013) Study on interfacial transition zone properties of recycled aggregate by micro-hardness test. Constr Build Mater 40:455–460. https://doi.org/10.1016/j.conbuildmat.2012.09.114

    Article  Google Scholar 

Download references

Acknowledgements

This research work was carried out in the frame of the CIRMAP Interreg project (No: NEW 1062), financed by the European Regional Development Fund (ERDF). The authors also thank the Vicat and Chryso companies for providing the cement and admixtures and the centre Terre & Pierre for preparing the recycled sands. A special thanks to “Collège de France” for the funding of the doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghed Al Thib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Thib, R., Belayachi, N., Bouarroudj, M.E. et al. A methodology for designing 3D printable mortar based on recycled sand. Mater Struct 56, 165 (2023). https://doi.org/10.1617/s11527-023-02251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02251-4

Keywords

Navigation