Skip to main content
Log in

Influence of C–S–Hs–PCE and Na2SO4 on the fluidity and mechanical performance of cement–lithium slag binder

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Application of C–S–Hs–PCE and sodium sulfate into Portland cement containing 20 wt% lithium slag (LS) powder was investigated, in order to strengthen early mechanical properties. Hydration properties and microstructure of cement-LS system were analyzed. Results showed that C–S–Hs–PCE was advantageous for modifying fluidity of fresh LS-cement binder, while increased dosage of sodium sulfate decreased dispersibility of fresh paste. C–S–Hs–PCE and sodium sulfate exhibited a synergistic effect on strength enhancement, hydration acceleration as well as setting behavior of LS-cement binder. Sodium sulfate increased alkalinity of interstitial solution and promoted dissolution of LS. Dissolved Al and Si from LS powder reacted with dissolved sulfate ions from sodium sulfate to produce extra hydrates, and C–S–Hs–PCE accelerated pozzolanic reaction and hydration reaction via nucleation effect collaborated with dispersing effect. The accelerated hydration generated more AFt and C–S–H gel in the matrix. Newly formed hydrates promoted exceedingly the appearance of network, leading to a refinement of pore structure as well as enhancement in mechanical strength. Application of LS into cement as a greener binder could be obtained by synergistic adoption of C–S–Hs–PCE and sodium sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yan QX et al (2012) Extraction of lithium from lepidolite by sulfation roasting and water leaching. Int J Miner Process 110:1–5

    Article  Google Scholar 

  2. Dong P, Ahmad MR, Chen B, Munir MJ, Kazmi SMS (2021) Preparation and study of magnesium ammonium phosphate cement from waste lithium slag. J Clean Prod 316:128371

    Article  Google Scholar 

  3. Tan H, Li M, He X, Su Y, Yang J, Zhao H (2021) Effect of wet grinded lithium slag on compressive strength and hydration of sulphoaluminate cement system. Construct Build Mater 267:120465

    Article  Google Scholar 

  4. He Y, Zhang Q, Chen Q, Bian J, Qi C, Kang Q, Feng Y (2021) Mechanical and environmental characteristics of cemented paste backfill containing lithium slag-blended binder. Construct Build Mater 271:121567

    Article  Google Scholar 

  5. Zhang T, Ma B, Tan H, Liu X, Chen P, Luo Z (2020) Effect of TIPA on mechanical properties and hydration properties of cement-lithium slag system. J Environ Manag 276:111274

    Article  Google Scholar 

  6. Li JZ, Huang SW (2020) Recycling of lithium slag as a green admixture for white reactive powder concrete. J Mater Cycles Waste Manage 22(6):1818–1827

    Article  Google Scholar 

  7. He ZH, Du SG, Chen D (2018) Microstructure of ultra high performance concrete containing lithium slag. J Hazard Mater 353:35–43

    Article  Google Scholar 

  8. Zhai M, Zhao J, Wang D, Wang Y, Wang Q (2021) Hydration properties and kinetic characteristics of blended cement containing lithium slag powder. J Build Eng 39:102287

    Article  Google Scholar 

  9. Li J, Lian P, Huang S, Huang L (2020) Recycling of lithium slag extracted from lithium mica by preparing white Portland cement. J Environ Manag 265:110551

    Article  Google Scholar 

  10. Liu Z et al (2019) A green route to sustainable alkali-activated materials by heat and chemical activation of lithium slag. J Clean Prod 225:1184–1193

    Article  Google Scholar 

  11. He ZH, Li LY, Du SG (2017) Mechanical properties, drying shrinkage, and creep of concrete containing lithium slag. Constr Build Mater 147:296–304

    Article  Google Scholar 

  12. Tan HB et al (2015) Utilization of lithium slag as an admixture in blended cements: physico-mechanical and hydration characteristics. J Wuhan Univ Technol-Mater Sci Ed 30(1):129–133

    Article  Google Scholar 

  13. Tan HB et al (2020) Preparation for micro-lithium slag via wet grinding and its application as accelerator in Portland cement. J Clean Prod 250:119528

    Article  Google Scholar 

  14. Joseph S, Snellings R, Cizer Ö (2019) Activation of Portland cement blended with high volume of fly ash using Na2SO4. Cement Concr Compos 104:103417

    Article  Google Scholar 

  15. Lu J, Yu Z, Zhu Y, Huang S, Luo Q, Zhang S (2019) Effect of Lithium-Slag in the Performance of Slag Cement Mortar Based on Least-Squares Support Vector Machine Prediction. Materials 12(10):1652

    Article  Google Scholar 

  16. Aljerf L, Choukaife AE (2016) Sustainable development in damascus University: a survey of internal stakeholder views. J Environ Stud 2(2):1–12

    Google Scholar 

  17. Shah SFA, Chen B, Ahmad MR, Haque MA (2021) Development of Cleaner One-part geopolymer from lithium slag. J Clean Prod 291:125241

    Article  Google Scholar 

  18. Tan HB et al (2018) Utilization of lithium slag by wet-grinding process to improve the early strength of sulphoaluminate cement paste. J Clean Prod 205:536–551

    Article  Google Scholar 

  19. Wu FF, Shi KB, Dong SK (2014) Properties and microstructure of HPC with lithium-slag and fly ash. Key Eng Mater 599:70–73

    Article  Google Scholar 

  20. Wang J, Han L, Liu Z, Wang D (2020) Setting controlling of lithium slag-based geopolymer by activator and sodium tetraborate as a retarder and its effects on mortar properties. Cement Concr Compos 110:103598

    Article  Google Scholar 

  21. Luo Q, Wen YF, Huang SW, Peng WL, Li JY, Zhou YX (2017) Effects of lithium slag from lepidolite on Portland cement concrete: Qi Luo Yufeng Wen, Shaowen Huang, Weiliang Peng, Jinyang Li & Yuxuan Zhou. In: Civil, Architecture and Environmental Engineering (pp 620-623). CRC Press

  22. He Y, Liu S, Hooton RD, Zhang X, He S (2022) Effects of TEA on rheological property and hydration performance of lithium slag-cement composite binder. Construct Build Mater 318:125757

    Article  Google Scholar 

  23. Wang YR et al (2019) Micro-morphology and phase composition of lithium slag from lithium carbonate production by sulphuric acid process. Constr Build Mater 203:304–313

    Article  Google Scholar 

  24. Wang WC (2014) Effects of fly ash and lithium compounds on the water-soluble alkali and lithium content of cement specimens. Constr Build Mater 50:727–735

    Article  Google Scholar 

  25. He Y, Chen Q, Qi C, Zhang Q, Xiao C (2019) Lithium slag and fly ash-based binder for cemented fine tailings backfill. J Environ Manag 248:109282

    Article  Google Scholar 

  26. Zhao Y, Qiu J, Xing J, Sun X (2020) Chemical activation of binary slag cement with low carbon footprint. J Clean Prod 267:121455

    Article  Google Scholar 

  27. Skibsted J, Snellings R (2019) Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cement Concr Res 124:105799

    Article  Google Scholar 

  28. Zhang L, Lv SZ, Liu Y, Xiao SY, Zhou PS (2015) Influence of lithium slag on cement properties. J Wuhan Univ Technol 37(3):23–27

    Google Scholar 

  29. Liu Z, Wang JX, Li L, Wang DM (2019) Characteristics of alkali-activated lithium slag at early reaction age. J Mater Civil Eng 31(12):04019312

    Article  Google Scholar 

  30. Xu L, Yang K, Tang C, Yang X, Wu K, Lothenbach B (2023) Lead retardation on cement hydration: Inhibition and re-acceleration of clinker dissolution. Cement Concr Compos 138:104986

    Article  Google Scholar 

  31. Tan H, Li M, He X, Su Y, Zhang J, Pan H, Wang Y (2020) Preparation for micro-lithium slag via wet grinding and its application as accelerator in Portland cement. J Clean Prod 250:119528

    Article  Google Scholar 

  32. Cavusoglu I, Yilmaz E, Yilmaz AO (2021) Additivity effect on properties of cemented coal fly ash backfill containing water-reducing admixtures. Construct Build Mater 267:121021

    Article  Google Scholar 

  33. Cavusoglu I, Yilmaz E, Yilmaz AO (2021) Sodium silicate effect on setting properties, strength behavior and microstructure of cemented coal fly ash backfill. Powder Technol 384:17–28

    Article  Google Scholar 

  34. Brykov AS et al (2002) Effect of hydrated sodium silicates on cement paste hardening. Russ J Appl Chem 75(10):1577–1579

    Article  Google Scholar 

  35. Brykov AS, Danilov BV, Larichkov AV (2006) Specific features of portland cement hydration in the presence of sodium hydrosilicates. Russ J Appl Chem 79(4):521–524

    Article  Google Scholar 

  36. Santana-Carrillo JL, Ortega-Zavala DE, Burciaga-Díaz O, Escalante-Garcia JI (2021) Modified blended limestone-Portland cement binders: Evaluation of 4 different sodium silicates. Cement Concr Compos 118:103935

    Article  Google Scholar 

  37. Wu K, Hu Y, Zhang L, Xu L, Yang Z (2022) Promoting the sustainable fabrication of bricks from municipal sewage sludge through modifying calcination: microstructure and performance characterization. Construct Build Mater 324:126401

    Article  Google Scholar 

  38. Cristelo N, Garcia-Lodeiro I, Rivera JF, Miranda T, Palomo Á, Coelho J, Fernández-Jiménez A (2021) One-part hybrid cements from fly ash and electric arc furnace slag activated by sodium sulphate or sodium chloride. J Build Eng 44:103298

    Article  Google Scholar 

  39. Cristelo N et al (2015) Assessing the production of jet mix columns using alkali activated waste based on mechanical and financial performance and CO2 (eq) emissions. J Clean Prod 102:447–460

    Article  Google Scholar 

  40. Habert G, de Lacaillerie JBD, Roussel N (2011) An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J Clean Prod 19(11):1229–1238

    Article  Google Scholar 

  41. Fu J, Jones AM, Bligh MW, Holt C, Keyte LM, Moghaddam F, Waite TD (2020) Mechanisms of enhancement in early hydration by sodium sulfate in a slag-cement blend–Insights from pore solution chemistry. Cement Concr Res 135:106110

    Article  Google Scholar 

  42. Neto JDSA, Angeles G, Kirchheim AP (2021) Effects of sulfates on the hydration of Portland cement–a review. Construct Build Mater 279:122428

    Article  Google Scholar 

  43. Zou F, Hu C, Wang F, Ruan Y, Hu S (2020) Enhancement of early-age strength of the high content fly ash blended cement paste by sodium sulfate and C-S–H seeds towards a greener binder. J Clean Prod 244:118566

    Article  Google Scholar 

  44. Criado M, Jimenez AF, Palomo A (2010) Effect of sodium sulfate on the alkali activation of fly ash. Cement Concr Compos 32(8):589–594

    Article  Google Scholar 

  45. Velandia DF et al (2016) Evaluation of activated high volume fly ash systems using Na2SO4, lime and quicklime in mortars with high loss on ignition fly ashes. Constr Build Mater 128:248–255

    Article  Google Scholar 

  46. Onuaguluchi O, Ratu R, Banthia N (2022) Effect of sodium sulfate activation on the early-age matrix strength and steel fiber bond in high volume fly ash (HVFA) cement mortar. Construct Build Mater 341:127808

    Article  Google Scholar 

  47. Li C et al (2017) Pozzolanic reaction of fly ash modified by fluidized bed reactor-vapor deposition. Cem Concr Res 92:98–109

    Article  Google Scholar 

  48. Velandia DF et al (2018) Effect of mix design inputs, curing and compressive strength on the durability of Na2SO4-activated high volume fly ash concretes. Cement Concr Compos 91:11–20

    Article  Google Scholar 

  49. Aydın S, Baradan B (2021) Sulfate resistance of alkali-activated slag and Portland cement based reactive powder concrete. J Build Eng 43:103205

    Article  Google Scholar 

  50. Guo S, Zhang Y, Wang K, Bu Y, Wang C, Ma C, Liu H (2019) Delaying the hydration of Portland cement by sodium silicate: Setting time and retarding mechanism. Construct Build Mater 205:543–548

    Article  Google Scholar 

  51. Rakhimova NR et al (2017) Mechanism of solidification of simulated borate liquid wastes with sodium silicate activated slag cements. J Clean Prod 149:60–69

    Article  Google Scholar 

  52. Roy S et al (1998) Investigation of Portland slag cement activated by waterglass. Cem Concr Res 28(7):1049–1056

    Article  Google Scholar 

  53. Nguyen HA, Chang TP, Thymotie A (2020) Enhancement of early engineering characteristics of modified slag cement paste with alkali silicate and sulfate. Construct Build Mater 230:117013

    Article  Google Scholar 

  54. Myers RJ, Bernal SA, Provis JL (2014) A thermodynamic model for C-(N-) ASH gel: CNASH_ss. Derivation and validation. Cement Concr Res 66:27–47

    Article  Google Scholar 

  55. Zhang J, Tan H, Bao M, Liu X, Luo Z, Wang P (2021) Low carbon cementitious materials: Sodium sulfate activated ultra-fine slag/fly ash blends at ambient temperature. J Clean Prod 280:124363

    Article  Google Scholar 

  56. Luan C, Zhou Y, Liu Y, Ren Z, Wang J, Yuan L, Huang Y (2022) Effects of nano-SiO2, nano-CaCO3 and nano-TiO2 on properties and microstructure of the high content calcium silicate phase cement (HCSC). Construct Build Mater 314:125377

    Article  Google Scholar 

  57. Ren Z, Liu Y, Yuan L, Luan C, Wang J, Cheng X, Zhou Z (2021) Optimizing the content of nano-SiO2, nano-TiO2 and nano-CaCO3 in Portland cement paste by response surface methodology. J Build Eng 35:102073

    Article  Google Scholar 

  58. Ng DS, Paul SC, Anggraini V, Kong SY, Qureshi TS, Rodriguez CR, Šavija B (2020) Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars. Construct Build Mater 258:119627

    Article  Google Scholar 

  59. Amor F et al (2022) Contribution of TiO2 and ZnO nanoparticles to the hydration of Portland cement and photocatalytic properties of High Performance Concrete. Construct Build Mater 16:e00965

    Google Scholar 

  60. Liu J, Suh H, Jee H, Xu J, Nezhad EZ, Choi CS, Bae S (2021) Synergistic effect of carbon nanotube/TiO2 nanotube multi-scale reinforcement on the mechanical properties and hydration process of portland cement paste. Construct Build Mater 293:123447

    Article  Google Scholar 

  61. Goyal R, Verma VK, Singh NB (2022) Effect of nano TiO2 & ZnO on the hydration properties of Portland cement. Mater Today Proc 65:1956–1963

    Article  Google Scholar 

  62. Moro C, Francioso V, Velay-Lizancos M (2021) Modification of CO2 capture and pore structure of hardened cement paste made with nano-TiO2 addition: influence of water-to-cement ratio and CO2 exposure age. Construct Build Mater 275:122131

    Article  Google Scholar 

  63. Li H, Xue Z, Liang G, Wu K, Dong B, Wang W (2021) Effect of CS-Hs-PCE and sodium sulfate on the hydration kinetics and mechanical properties of cement paste. Construct Build Mater 266:121096

    Article  Google Scholar 

  64. Li H, Gu L, Dong B, Chen Q, Xu C, Yang X, Wang W (2020) Improvements in setting behavior and strengths of cement paste/mortar with EVA redispersible powder using CS-Hs-PCE. Construct Build Mater 262:120097

    Article  Google Scholar 

  65. Liang G et al (2021) Synergistic effect of EVA, TEA and C–S–Hs–PCE on the hydration processand mechanical properties of Portland cement paste at early age. Construct Build Mater 272:121891

    Article  Google Scholar 

  66. Xu C, Li H, Yang X, Dong B, Wang W (2021) Action of the combined presence of CS-Hs-PCE and triethanolamine on the performances of cement paste/mortar. Construct Build Mater 269:121345

    Article  Google Scholar 

  67. Xu C, Liang G, Li H, Dong B, Yang X, Yang Z (2021) Insight into early-age performance of cement paste/mortar with CS-Hs-PCE and aluminum sulfate. J Mater Civil Eng 33(8):04021210

    Article  Google Scholar 

  68. Kanchanason V, Plank J (2018) Effectiveness of a calcium silicate hydrate - Polycarboxylate ether (C-S-H-PCE) nanocomposite on early strength development of fly ash cement. Constr Build Mater 169:20–27

    Article  Google Scholar 

  69. Kanchanason V, Plank J (2017) Role of pH on the structure, composition and morphology of C-S-H-PCE nanocomposites and their effect on early strength development of Portland cement. Cem Concr Res 102:90–98

    Article  Google Scholar 

  70. Wang ZM, Yao YH, Tang RF, Li ST, Liu X, Sun DW (2021) The effect and mechanism of C-S–H-PCE nanocomposites on the early strength of mortar under different water-to-cement ratio. J Build Eng 44:103360

    Article  Google Scholar 

  71. John E, Epping JD, Stephan D (2019) The influence of the chemical and physical properties of CSH seeds on their potential to accelerate cement hydration. Construct Build Mater 228:116723

    Article  Google Scholar 

  72. John E, Stephan D, Lehmann C (2019) Accelerating cement hydration with C-S-H seeds. ZKG Int 72(4):53–59

    Google Scholar 

  73. Gu X, Tan H, He X, Zhang J, Li M, Su Y, Yang J (2022) Nano CSH seeds prepared from ground granulated blast-furnace slag-carbide slag and its application in Portland cement. Construct Build Mater 329:127204

    Article  Google Scholar 

  74. John E, Matschei T, Stephan D (2018) Nucleation seeding with calcium silicate hydrate - A review. Cem Concr Res 113:74–85

    Article  Google Scholar 

  75. Wang F, Kong X, Jiang L, Wang D (2020) The acceleration mechanism of nano-CSH particles on OPC hydration. Construct Build Mater 249:118734

    Article  Google Scholar 

  76. Sun JF et al (2017) Effects of synthetic C-S-H/PCE nanocomposites on early cement hydration. Constr Build Mater 140:282–292

    Article  Google Scholar 

  77. Pedrosa HC, Reales OM, Reis VD, das Dores Paiva, M., & Fairbairn, E. M. R. (2020) Hydration of Portland cement accelerated by CSH seeds at different temperatures. Cement Concr Res 129:105978

    Article  Google Scholar 

  78. Zou F, Zhang M, Hu C, Wang F, Hu S (2021) Novel CASH/PCE nanocomposites: design, characterization and the effect on cement hydration. Chem Eng J 412:128569

    Article  Google Scholar 

  79. Nicoleau L (2011) Accelerated growth of calcium silicate hydrates: experiments and simulations. Cem Concr Res 41(12):1339–1348

    Article  Google Scholar 

  80. Kanchanason V, Plank J (2019) Effect of calcium silicate hydrate - polycarboxylate ether (C-S-H PCE) nanocomposite as accelerating admixture on early strength enhancement of slag and calcined clay blended cements. Cem Concr Res 119:44–50

    Article  Google Scholar 

  81. Thomas JJ, Jennings HM, Chen JJ (2009) Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. J Phys Chem C 113(11):4327–4334

    Article  Google Scholar 

  82. Sun J, Dong H, Wu J, Jiang J, Li W, Shen X, Hou G (2021) Properties evolution of cement-metakaolin system with CSH/PCE nanocomposites. Construct Build Mater 282:122707

    Article  Google Scholar 

  83. Hubler MH, Thomas JJ, Jennings HM (2011) Influence of nucleation seeding on the hydration kinetics and compressive strength of alkali activated slag paste. Cem Concr Res 41(8):842–846

    Article  Google Scholar 

  84. He Y, Zhang X, Hooton RD (2017) Effects of organosilane-modified polycarboxylate superplasticizer on the fluidity and hydration properties of cement paste. Constr Build Mater 132:112–123

    Article  Google Scholar 

  85. Liu M, Tan HB, He XY (2019) Effects of nano-SiO2 on early strength and microstructure of steam-cured high volume fly ash cement system. Constr Build Mater 194:350–359

    Article  Google Scholar 

  86. He Y, Zhang X, Liu S, Hooton RD, Ji T, Kong Y (2020) Impacts of sulphates on rheological property and hydration performance of cement paste in the function of polycarboxylate superplasticizer. Construct Build Mater 256:119428

    Article  Google Scholar 

  87. Zou FB et al (2018) Effect of triisopropanolamine on compressive strength and hydration of steaming-cured cement-fly ash paste. Constr Build Mater 192:836–845

    Article  Google Scholar 

  88. GB/T1346–2011, (2011) Test methods for water requirement of normal consistency, setting time and soundness of the Portland cement

  89. GB/T17671–2021, Test methods of cement mortar strength (ISO method)

  90. He Y et al (2020) Influence of PCE on rheological and hydration performances of cement paste. J Mater Civ Eng 32(3):04020002

    Article  Google Scholar 

  91. He Y et al (2018) Influence of polycarboxylate superplasticizer on rheological behavior in cement paste. J Wuhan Univ Technol-Mater Sci Ed 33(4):932–937

    Article  Google Scholar 

  92. He Y et al (2019) Effects of PCEs with various carboxylic densities and functional groups on the fluidity and hydration performances of cement paste. Constr Build Mater 202:656–668

    Article  Google Scholar 

  93. Li H, Xu C, Dong B, Chen Q, Gu L, Yang X (2020) Enhanced performances of cement and powder silane based waterproof mortar modified by nucleation CSH seed. Construct Build Mater 246:118511

    Article  Google Scholar 

  94. He Y et al (2019) Effect of carboxylic density on sulfate sensitivity of polycarboxylate superplasticizers. KSCE J Civ Eng 23(12):5163–5172

    Article  Google Scholar 

  95. Zhang XW, Lu CX, Shen JY (2016) Influence of tartaric acid on early hydration and mortar performance of Portland cement-calcium aluminate cement-anhydrite binder. Constr Build Mater 112:877–884

    Article  Google Scholar 

  96. Zhang YJ et al (2018) The synergistic effect of AFt enhancement and expansion in Portland cement-aluminate cement-FGD gypsum composite cementitious system. Constr Build Mater 190:985–994

    Article  Google Scholar 

  97. Zhang R, Bassim N, Panesar DK (2018) Characterization of Mg components in reactive MgO Portland cement blends during hydration and carbonation. J CO2 Utilizat 27:518–527

  98. Zhu Z, Wang Z, Xu L, Zhou Y, Chen Y, Wu K, De Schutter G (2022) Synthesis and characterization of an intermediate for CSH structure tailoring. Cement Concr Res 160:106923

    Article  Google Scholar 

  99. Zhang Y, Kong X (2015) Correlations of the dispersing capability of NSF and PCE types of Superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes. Cem Concr Res 69:1–9

    Article  Google Scholar 

  100. Qi S et al (2018) Dispersion ability, adsorption and retardation effects of phosphonated small molecule superplasticizers. Adv Cement Res

  101. Kong XM, Zhang YR, Hou SS (2013) Study on the rheological properties of Portland cement pastes with polycarboxylate superplasticizers. Rheol Acta 52(7):707–718

    Article  Google Scholar 

  102. Ran QP et al (2009) Effect of the length of the side chains of comb-like copolymer dispersants on dispersion and rheological properties of concentrated cement suspensions. J Colloid Interf Sci 336(2):624–633

    Article  Google Scholar 

  103. He Y, Liu S, Luo Q, Liu W, Xu M (2021) Influence of PCE-type GA on cement hydration performances. Construct Build Mater 302:124432

    Article  Google Scholar 

  104. Kong FR et al (2016) Effects of polycarboxylate superplasticizers with different molecular structure on the hydration behavior of cement paste. Constr Build Mater 105:545–553

    Article  Google Scholar 

  105. Shin JY et al (2008) Effects of polycarboxylate-type superplasticizer on fluidity and hydration behavior of cement paste. Korean J Chem Eng 25(6):1553–1561

    Article  Google Scholar 

  106. Scrivener KL, Juilland P, Monteiro PJM (2015) Advances in understanding hydration of Portland cement. Cem Concr Res 78:38–56

    Article  Google Scholar 

  107. Ma J et al (2019) Effects of limestone powder on the hydration and microstructure development of calcium sulphoaluminate cement under long-term curing. Constr Build Mater 199:688–695

    Article  Google Scholar 

  108. Alizadeh R et al (2009) Hydration of tricalcium silicate in the presence of synthetic calcium-silicate-hydrate. J Mater Chem 19(42):7937–7946

    Article  Google Scholar 

  109. Wang J, Ma B, Tan H, Du C, Chu Z, Luo Z, Wang P (2021) Hydration and mechanical properties of cement-marble powder system incorporating triisopropanolamine. Construct Build Mater 266:121068

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (51808369, 51890911), CRSRI Open Research Program (CKWV20221020/KY), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX22_1577, SJCX23_1722).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Zhang, G., Chen, J. et al. Influence of C–S–Hs–PCE and Na2SO4 on the fluidity and mechanical performance of cement–lithium slag binder. Mater Struct 56, 158 (2023). https://doi.org/10.1617/s11527-023-02243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02243-4

Keywords

Navigation