Skip to main content
Log in

Comparative study of effects of various seaweed parietal polysaccharides on rheological, mechanical and water-durability properties of earth-based materials

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In Brittany, invasive algae represent a real problem, unbalancing local ecosystems and threatening the economy and tourism, with massive stranding’s, especially in summer. The valorization of invasive algae in green processes and materials such as ecological building materials could represent a real opportunity to try to control the spread of these species. Raw earth is a locally sourced building material, non-toxic and sustainable. In this work, we propose then to compare the effect of four invasive Brittany seaweeds, exotic or indigenous, on the fresh state and hardened properties of raw earth material. In particular, we investigated the performance of Polyopes lancifolius, Solieria chordalis, Ulva sp. and Sargassum muticum on the compressive strength, water resistance and extrudability of the raw earth material. Several forms of seaweed extracts were tested, raw seaweeds dried and ground, freeze-dried hot water extracts and extracted polysaccharides. Our results showed that the incorporation of S. chordalis and S. muticum, in the freeze-dried form or polysaccharides, allows a threefold increase in the compressive strength and a better resistance to water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author Simon Guihéneuf, and the first author Yasmine Autem upon reasonable request.

References

  1. Ioannidou D, Meylan G, Sonnemann G, Habert G (2017) Is gravel becoming scarce? Evaluating the local criticality of construction aggregates. Resour Conserv Recycl 126:25–33. https://doi.org/10.1016/j.resconrec.2017.07.016

    Article  Google Scholar 

  2. Peduzzi P (2014) Sand, rarer than one thinks. Environ Dev 11:208–218. https://doi.org/10.1016/j.envdev.2014.04.001

    Article  Google Scholar 

  3. Nakamatsu J, Kim S, Ayarza J, Ramírez E, Elgegren M, Aguilar R (2017) Eco-friendly modification of earthen construction with carrageenan: water durability and mechanical assessment. Constr Build Mater 139:193–202. https://doi.org/10.1016/j.conbuildmat.2017.02.062

    Article  Google Scholar 

  4. Barcelo L, Walenta G, Gartner E (2014) Cement and carbon emissions. Mater Struct 47(6):1055–1065. https://doi.org/10.1617/s11527-013-0114-5

    Article  Google Scholar 

  5. Saiter JM, Dobircau L, Leblanc N (2012) Are 100% green composites and green thermoplastics the new materials for the future? Int J Polym Sci. https://doi.org/10.1155/2012/280181

    Article  Google Scholar 

  6. Morel JC, Mesbah A, Oggero M, Walker P (2001) Building houses with local materials: means to drastically reduce the environmental impact of construction. Build Environ 36(10):1119–1126

    Article  Google Scholar 

  7. Cagnon H, Aubert JE, Coutand M, Magniont C (2014) Hygrothermal properties of earth bricks. Energy Build 80:208–217. https://doi.org/10.1016/j.enbuild.2014.05.024

    Article  Google Scholar 

  8. Bruno AW, Gallipoli D, Perlot C, Mendes J (2017) Effect of stabilisation on mechanical properties, moisture buffering and water durability of hypercompacted earth. Constr Build Mater 149:733–740. https://doi.org/10.1016/j.conbuildmat.2017.05.182

    Article  Google Scholar 

  9. Guihéneuf S, Rangeard D, Perrot A, Cusin T, Collet F, Prétot S (2020) Effect of bio-stabilizers on capillary absorption and water vapour transfer into raw earth. Mater Struct. https://doi.org/10.1617/s11527-020-01571-z

    Article  Google Scholar 

  10. Ouedraogo KAJ, Aubert JE, Tribout C, Escadeillas G (2020) Is stabilization of earth bricks using low cement or lime contents relevant? Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.117578

    Article  Google Scholar 

  11. Venkatarama Reddy BV, Prasanna Kumar P (2011) Cement stabilised rammed earth. Part A: compaction characteristics and physical properties of compacted cement stabilised soils. Mater Struct 44(3):681–693. https://doi.org/10.1617/s11527-010-9658-9

    Article  Google Scholar 

  12. Vissac A, Bourgès A, Gandreau D, Anger R, Fontaine L (2017) Argiles and biopolymères les stabilisants naturels pour la construction en terre. CRAterre éditions

  13. Ouedraogo KAJ, Aubert JE, Tribout C, Millogo Y, Escadeillas G (2021) Ovalbumin as natural organic binder for stabilizing unfired earth bricks: Understanding vernacular techniques to inspire modern constructions. J Cult Herit 50:139–149. https://doi.org/10.1016/j.culher.2021.05.004

    Article  Google Scholar 

  14. Mineur F, de Clerck O, le Roux A, Maggs CA, Verlaque M (2010) Polyopes lancifolius (Halymeniales, Rhodophyta), a new component of the Japanese marine flora introduced to Europe. Phycologia 49(1):86–96. https://doi.org/10.2216/09-45.1

    Article  Google Scholar 

  15. Plouguerné E, le Lann K, Connan S, Jechoux G, Deslandes E, Stiger-Pouvreau V (2006) Spatial and seasonal variation in density, reproductive status, length and phenolic content of the invasive brown macroalga Sargassum muticum (Yendo) Fensholt along the coast of Western Brittany (France). Aquat Bot 85(4):337–344. https://doi.org/10.1016/j.aquabot.2006.06.011

    Article  Google Scholar 

  16. Ménesguen A, Perrot T, Dussauze M (2010) Ulva mass accumulations on Brittany beaches: explanation and remedies deduced from models. Mercat Ocean Q Newsl 38:4–13

    Google Scholar 

  17. Burlot AS (2016) Etude de la macroalgue rouge Solieria chordalis : aspects écophysiologiques, production d’extraits et perspectives d’appications (Thesis)

  18. Menon VV (2011) 36 Seaweed Polysaccharides-food applications. Handbook of marine macroalgae. Wiley, pp 541–555

    Chapter  Google Scholar 

  19. Cunha L, Grenha A (2016) Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs. https://doi.org/10.3390/md14030042

    Article  Google Scholar 

  20. Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16(4):245–262

    Article  Google Scholar 

  21. Deniaud-Bouët E, Kervarec N, Michel G, Tonon T, Kloareg B, Hervé C (2014) Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Ann Bot 114(6):1203–1216. https://doi.org/10.1093/aob/mcu096

    Article  Google Scholar 

  22. Dang BT, Bui XT, Tran DPH, Hao Ngo H, Nghiem LD, Hoang TKD, Nguyen PT, Nguyen HH, Vo TKQ, Lin C, Yi Andrew Lin K, Varjani S (2022) Current application of algae derivatives for bioplastic production: a review. Bioresour Technol. https://doi.org/10.1016/j.biortech.2022.126698

    Article  Google Scholar 

  23. Berglund L, Nissilä T, Sivaraman D, Komulainen S, Telkki VV, Oksman K (2021) Seaweed-derived alginate-cellulose nanofiber aerogel for insulation applications. ACS Appl Mater Interfaces 13(29):34899–34909. https://doi.org/10.1021/acsami.1c07954

    Article  Google Scholar 

  24. Micaelo R, Al-Mansoori T, Garcia A (2016) Study of the mechanical properties and self-healing ability of asphalt mixture containing calcium-alginate capsules. Constr Build Mater 123:734–744. https://doi.org/10.1016/j.conbuildmat.2016.07.095

    Article  Google Scholar 

  25. Usov AI (1992) Sulfated polysaccharides of the red seaweeds. Top Catal 6(1):9–23. https://doi.org/10.1016/S0268-005X(09)80055-6

    Article  Google Scholar 

  26. Bondu S, Deslandes E, Fabre MS, Berthou C, Guangli Y (2010) Carrageenan from Solieria chordalis (Gigartinales): structural analysis and immunological activities of the low molecular weight fractions. Carbohydr Polym 81(2):448–460

    Article  Google Scholar 

  27. Seely GR, Hart RL (1974) The binding of alkaline earth metal ions to alginate. Macromolecules 7:706–710

    Article  Google Scholar 

  28. Mohamed DA, Hassan AA, Helmy MM (2021) Extraction and characterization of sodium alginates extracted from Sargassum muticum and Turbinaria conoides. Int J Innov Sci Eng Technol 8:64–75

    Google Scholar 

  29. Kidgell JT, Magnusson M, de Nys R, Glasson CRK (2019) Ulvan: a systematic review of extraction, composition and function. Algal Res. https://doi.org/10.1016/j.algal.2019.101422

    Article  Google Scholar 

  30. Chi Y, Li H, Fan L, Du C, Zhang J, Guan H, Wang P, Li R (2021) Metal-ion-binding properties of ulvan extracted from Ulva clathrata and structural characterization of its complexes. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2021.118508

    Article  Google Scholar 

  31. Cao Y, Li S, Fang Y, Nishinari K, Phillips GO, Lerbret A, Assifaoui A (2018) Specific binding of trivalent metal ions to λ-carrageenan. Int J Biol Macromol 109:350–356. https://doi.org/10.1016/j.ijbiomac.2017.12.095

    Article  Google Scholar 

  32. Guihéneuf S, Rangeard D, Perrot A (2019) Addition of bio based reinforcement to improve workability, mechanical properties and water resistance of earth-based materials. Acad J Civ Eng 37(2):184–192. https://doi.org/10.26168/icbbm2019.26

    Article  Google Scholar 

  33. Dove C (2014) The development of unfired earth bricks using seaweed biopolymers. WIT Trans Built Environ 142:219–230. https://doi.org/10.2495/ARC140201

    Article  Google Scholar 

  34. Hardouin K, Bouyer R, Pliego-Cortés H, Le Men T, Cérantola S, Marty C, Douzenel P, Bedoux G, Bourgougnon N (2022) Chemical characterization of the invasive red alga Polyopes lancifolius (Harvey) Kawaguchi & Wang (Halymeniales) from the Gulf of Morbihan (France) Phycologia. https://doi.org/10.3390/md20020116

  35. Déniel M, Puspita M, Douzenel P, Stiger-Pouvreau V, Bedoux G, Bourgougnon N, Vandanjon L (2017) Seasonal variation of Sargassum Muticum biochemical composition determined by fourier transform infra-red spectroscopy. JABST 2:75–84. https://doi.org/10.15436/2476-1869.17.1555

    Article  Google Scholar 

  36. Hardouin K, Burlot A-S, Umami A, Tanniou A, Stiger-Pouvreau V, Widowati I, Bedoux G, Bourgougnon N (2014) Biochemical and antiviral activities of enzymatic hydrolysates from different invasive French seaweeds. J Appl Phycol 26:1029–1042. https://doi.org/10.1007/s10811-013-0201-6

    Article  Google Scholar 

  37. Paradossi G, Cavalieri F, Pizzoferrato L, Liquori AM (1999) A physico-chemical study on the polysaccharide ulvan from hot water extraction of the macroalga Ul6a. Int J Biol Macromol 25(4):309–315

    Article  Google Scholar 

  38. Mazumder A, Holdt SL, de Francisci D, Alvarado-Morales M, Mishra HN, Angelidaki I (2016) Extraction of alginate from Sargassum muticum: process optimization and study of its functional activities. J Appl Phycol 28(6):3625–3634. https://doi.org/10.1007/s10811-016-0872-x

    Article  Google Scholar 

  39. NF EN 196-1 (2016) Methods of testing cement—Part 1: Determination of strength. AFNOR 2016

  40. XP P13-901 (2022) Earth bricks and earth blocks for walls and partitions—definitions—specifications—test methods—delivery acceptance conditions. AFNOR 2022

  41. NF EN ISO 17892-7 (2018) Geotechnical investigation and testing—laboratory testing of soil – Part 7: unconfined compression test. AFNOR 2018

  42. Perrot A, Rangeard D, Menasria F, Guihéneuf S (2018) Strategies for optimizing the mechanical strengths of raw earth-based mortars. Constr Build Mater 167:496–504. https://doi.org/10.1016/j.conbuildmat.2018.02.055

    Article  Google Scholar 

  43. Ardant D, Brumaud C, Habert G (2020) Influence of additives on poured earth strength development. Mater Struct 53:127. https://doi.org/10.1617/s11527-020-01564-y

    Article  Google Scholar 

  44. Perrot A, Rangeard D, Lecompte T (2018) Field-oriented tests to evaluate the workability of cob and adobe. Mater Struct. https://doi.org/10.1617/s11527-018-1181-4

    Article  Google Scholar 

  45. Khelifi H, Lecompte T, Perrot A, Ausias G (2016) Mechanical enhancement of cement-stabilized soil by flax fibre reinforcement and extrusion processing. Mater Struct 49(4):1143–1156

    Article  Google Scholar 

  46. Maskell D, Heath A, Walker P (2013) Laboratory scale testing of extruded earth masonry units. Mater Des 45:359–364. https://doi.org/10.1016/j.matdes.2012.09.008

    Article  Google Scholar 

  47. Khelifi H, Perrot A, Lecompte T, Rangeard D, Ausias G (2013) Prediction of extrusion load and liquid phase filtration during ram extrusion of high solid volume fraction pastes. Powder Technol 249:258–268

    Article  Google Scholar 

  48. Perrot A, Rangeard D, Nerella VN, Mechtcherine V (2018) Extrusion of cement-based materials - an overview. RILEM Tech Lett 3:91–97. https://doi.org/10.21809/rilemtechlett.2018.75

    Article  Google Scholar 

  49. Perrot A, Mélinge Y, Rangeard D, Micaelli F, Estellé P, Lanos C (2012) Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate. Rheol Acta 51(8):743–754. https://doi.org/10.1007/s00397-012-0638-6

    Article  Google Scholar 

  50. Menasria F, Perrot A, Rangeard D (2017) Using alginate biopolymer to enhance the mechanical properties of earth-based materials. In: EcoGRAFI 2nd International Conference on Bio-based Building Materials and 1st Conference on ECOlogical valorisation of GRAnular and FIbrous materials

  51. Bourgougnon N, Gervois A (2021) Les algues marines. Ellipses Illustrated édition

    Google Scholar 

  52. Janaswamy S, Chandrasekaran R (2002) Effect of calcium ions on the organization of iota-carrageenan helices: an X-ray investigation. Carbohydr Res 337(6):523–535

    Article  Google Scholar 

  53. Alves A, Sousa RA, Reis RL (2013) A practical perspective on ulvan extracted from green algae. J Appl Phycol 25(2):407–424. https://doi.org/10.1007/s10811-012-9875-4

    Article  Google Scholar 

  54. Perrot A, Rangeard D, Pierre A (2016) Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct 49(4):1213–1220. https://doi.org/10.1617/s11527-015-0571-0

    Article  Google Scholar 

  55. Perrot A, Rangeard D, Courteille E (2018) 3D printing of earth-based materials: Processing aspects. Constr Build Mater 172:670–676. https://doi.org/10.1016/j.conbuildmat.2018.04.017

    Article  Google Scholar 

  56. Wangler T, Pileggi R, Gürel S, Flatt RJ (2022) A chemical process engineering look at digital concrete processes: critical step design, inline mixing, and scaleup. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2022.106782

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank LCBTP-Pigeon, for their supply of quarry waste used to formulate a lab-designed earthen material for the experiments.

Funding

The authors would like to thank IUEM (Institut Universitaire Européen de la Mer) who funded this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization NB, AP; SG; Validation YA, NB, SG, AP; Investigation YA, SG, AP; Writing-original draft YA; Writing-review and editing NB, SG, AP; Funding NB, AP.

Corresponding author

Correspondence to Simon Guihéneuf.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 146 kb)

Supplementary file2 (TIFF 729 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Autem, Y., Bourgougnon, N., Guihéneuf, S. et al. Comparative study of effects of various seaweed parietal polysaccharides on rheological, mechanical and water-durability properties of earth-based materials. Mater Struct 56, 108 (2023). https://doi.org/10.1617/s11527-023-02195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02195-9

Keywords

Navigation