Skip to main content
Log in

Nano-deterioration of steel passivation film: chloride attack in material defects

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A chloride attack is one of the culprits for the structural deterioration of steel passivation film in the coastal environment, which greatly limits the sustainability of the materials in infrastructure. Since the passivation film is usually only a few nanometers to tens of nanometers, it is necessary to study methods at appropriate scales. To effectively assess the hazards of chloride ions, the nanoscale process of γ-FeOOH deterioration is revealed by reactive molecular dynamics and electronic structures. It is found that the perfect γ-FeOOH can not deteriorate and the defects can facilitate chloride attack. The Cl is first adsorbed on the defects of γ-FeOOH, and then induces the Na+ to form Cl-Na pairs. The vibration of Cl-Na pairs will weaken the interaction between the layers of γ-FeOOH and thus break the γ-FeOOH structure. The electronic structural analyses prove that the Cl ions have strong bonding with the hydroxyls of γ-FeOOH, but Na ions are the opposite. Therefore, the Cl and Na ions play the role of anchoring the γ-FeOOH surface and breaking the γ-FeOOH structure by vibration, respectively. The detail of nanoscale static and dynamic properties are also revealed. This phenomenon can be recognized as the first step in the structural deterioration of steel passivation films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data is available on request from the authors.

References

  1. Emerson SD, Nadeau J (2003) A coastal perspective on security, investigation and repair. J Hazard Mater 104(1–3):1–13

    Article  Google Scholar 

  2. Koch GH, Brongers MP, Thompson NG, Virmani YP, Payer JH (2002) Corrosion cost and preventive strategies in the United States. CRC Press, Boca Raton

    Google Scholar 

  3. Song H-W, Saraswathy V (2006) Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag—an overview. J Hazard Mater 138(2):226–233

    Article  Google Scholar 

  4. Cabrera JG (1996) Deterioration of concrete due to reinforcement steel corrosion. Cement Concr Compos 18(1):47–59

    Article  MathSciNet  Google Scholar 

  5. Bennett LH (1978) Economic effects of metallic corrosion in the united states: a report to the congress. The Bureau

    Book  Google Scholar 

  6. Hou B, Li X, Ma X, Du C, Zhang D, Zheng M, Xu W, Lu D, Ma F (2017) The cost of corrosion in China. npj Mater Degrad 1(1):1–10

    Article  Google Scholar 

  7. González MB, Saidman SB (2011) Electrodeposition of polypyrrole on 316L stainless steel for corrosion prevention. Corros Sci 53(1):276–282

    Article  Google Scholar 

  8. Peng C, Chang K, Weng C, Lai M, Hsu C, Hsu S, Hsu Y, Hung W, Wei Y, Yeh J (2013) Nano-casting technique to prepare polyaniline surface with biomimetic superhydrophobic structures for anticorrosion application. Electrochim Acta 95:192–199

    Article  Google Scholar 

  9. Wessling B, Posdorfer J (1999) Corrosion prevention with an organic metal (polyaniline): corrosion test results. Electrochim Acta 44(12):2139–2147

    Article  Google Scholar 

  10. Liang C, Cai Z, Wu H, Xiao J, Zhang Y, Ma Z (2021) Chloride transport and induced steel corrosion in recycled aggregate concrete: A review. Constr Build Mater 282:122547

    Article  Google Scholar 

  11. Otieno M, Beushausen H, Alexander M (2016) Chloride-induced corrosion of steel in cracked concrete—Part I: experimental studies under accelerated and natural marine environments. Cem Concr Res 79:373–385

    Article  Google Scholar 

  12. Zhao Y, Karimi AR, Wong HS, Hu B, Buenfeld NR, Jin W (2011) Comparison of uniform and non-uniform corrosion induced damage in reinforced concrete based on a Gaussian description of the corrosion layer. Corros Sci 53(9):2803–2814

    Article  Google Scholar 

  13. Zakroczymski T, Fan CJ, Szklarska-Smialowska Z (1985) Kinetics and mechanism of passive film formation on iron in 0.05MNaOH. J Electrochem Soc 132(12):2862

    Article  Google Scholar 

  14. Olsson COA, Landolt D (2003) Passive films on stainless steels—chemistry, structure and growth. Electrochim Acta 48(9):1093–1104

    Article  Google Scholar 

  15. Montemor MF, Simões AMP, Ferreira MGS (1998) Analytical characterization of the passive film formed on steel in solutions simulating the concrete interstitial electrolyte. Corrosion 54(5):347–353

    Article  Google Scholar 

  16. Chen D, Mahadevan S (2008) Chloride-induced reinforcement corrosion and concrete cracking simulation. Cement Concr Compos 30(3):227–238

    Article  Google Scholar 

  17. Luo H, Dong CF, Li XG, Xiao K (2012) The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride. Electrochim Acta 64:211–220

    Article  Google Scholar 

  18. Williamson J, Isgor OB (2016) The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar. Corros Sci 106:82–95

    Article  Google Scholar 

  19. Angst U, Elsener B, Larsen CK, Vennesland Ø (2009) Critical chloride content in reinforced concrete—a review. Cem Concr Res 39(12):1122–1138

    Article  Google Scholar 

  20. Ann KY, Song H (2007) Chloride threshold level for corrosion of steel in concrete. Corros Sci 49(11):4113–4133

    Article  Google Scholar 

  21. Goyal A, Pouya HS, Ganjian E, Claisse P (2018) A review of corrosion and protection of steel in concrete. Arab J Sci Eng 43(10):5035–5055

    Article  Google Scholar 

  22. Nasser A, Clément A, Laurens S, Castel A (2010) Influence of steel–concrete interface condition on galvanic corrosion currents in carbonated concrete. Corros Sci 52(9):2878–2890

    Article  Google Scholar 

  23. Han J, Nešić S, Yang Y, Brown BN (2011) Spontaneous passivation observations during scale formation on mild steel in CO2 brines. Electrochim Acta 56(15):5396–5404

    Article  Google Scholar 

  24. Hansson CM, Poursaee A, Laurent A (2006) Macrocell and microcell corrosion of steel in ordinary Portland cement and high performance concretes. Cem Concr Res 36(11):2098–2102

    Article  Google Scholar 

  25. Schmutz P, Landolt D (1999) In-situ microgravimetric studies of passive alloys: potential sweep and potential step experiments with Fe–25Cr and Fe–17Cr–33Mo in acid and alkaline solution. Corros Sci 41(11):2143–2163

    Article  Google Scholar 

  26. Hou D, Lu Z, Li X, Ma H, Li Z (2017) Reactive molecular dynamics and experimental study of graphene-cement composites: structure, dynamics and reinforcement mechanisms. Carbon 115:188–208

    Article  Google Scholar 

  27. Sanchez F, Sobolev K (2010) Nanotechnology in concrete—a review. Constr Build Mater 24(11):2060–2071

    Article  Google Scholar 

  28. Thomas JJ, Biernacki JJ, Bullard JW, Bishnoi S, Dolado JS, Scherer GW, Luttge A (2011) Modelling and simulation of cement hydration kinetics and microstructure development. Cem Concr Res 41(12):1257–1278

    Article  Google Scholar 

  29. Al-Ostaz A, Wu W, Cheng AHD, Song CR (2010) A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement. Compos B Eng 41(7):543–549

    Article  Google Scholar 

  30. Chenoweth K, van Duin ACT, Goddard WA (2008) ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 112(5):1040–1053

    Article  Google Scholar 

  31. Pan T, van Duin ACT (2011) Passivation of steel surface: an atomistic modelling approach aided with X-ray analyses. Mater Lett 65(21):3223–3226

    Article  Google Scholar 

  32. DorMohammadi H, Pang Q, Árnadóttir L, Isgor OB (2018) Atomistic simulation of initial stages of iron corrosion in pure water using reactive molecular dynamics. Comput Mater Sci 145:126–133

    Article  Google Scholar 

  33. DorMohammadi H, Pang Q, Murkute P, Arnadottir L, Isgor OB (2019) Investigation of chloride-induced depassivation of iron in alkaline media by reactive force field molecular dynamics. NPJ Mater Degrad 3(1):19

    Article  Google Scholar 

  34. Hou D, Xu X, Wang M, Chen Z, Zhang J, Dong B, Miao J, Liu C (2020) Nanoscale insights on the interface between passive film of steel and cement hydrate: diffusion, kinetics and mechanics. Appl Surf Sci 514:145898

    Article  Google Scholar 

  35. Song Y, Cao Y, Wang J, Zhou Y, Fang F, Li Y, Gao S, Gu Q, Hu L, Sun D (2016) Bottom-up approach design, band structure, and lithium storage properties of atomically thin γ-FeOOH nanosheets. ACS Appl Mater Interfaces 8(33):21334–21342

    Article  Google Scholar 

  36. Hou D, Zhang K, Hong F, Wu S, Wang Z, Li M, Wang M (2022) The corrosion deterioration of reinforced passivation film: the impact of defects. Appl Surf Sci 582:152408

    Article  Google Scholar 

  37. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30(13):2157–2164

    Article  Google Scholar 

  38. Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, in’t Veld PJ, Kohlmeyer A, Moore SG, Nguyen TD, Shan R (2022) LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 271:108171

    Article  Google Scholar 

  39. Di Franco F, Tranchida G, Pupillo D, Ghersi G, Cinà P, Virtanen S, Santamaria M (2021) Effect of E. coli biofilm formation and removal on passive films on AISI 316L during fermentation processes. Corros Sci 185:109430

    Article  Google Scholar 

  40. Gu J, Lu S, Shao Y, Yao K (2021) Segregating the homogeneous passive film and understanding the passivation mechanism of Ti-based metallic glasses. Corros Sci 178:109078

    Article  Google Scholar 

  41. Weismiller MR, van Duin ACT, Lee J, Yetter RA (2010) ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion. J Phys Chem A 114(17):5485–5492

    Article  Google Scholar 

  42. Fedkin MV, Shin YK, Dasgupta N, Yeon J, Zhang W, van Duin D, van Duin ACT, Mori K, Fujiwara A, Machida M, Nakamura H, Okumura M (2019) Development of the ReaxFF methodology for electrolyte-water systems. J Phys Chem A 123(10):2125–2141

    Article  Google Scholar 

  43. Subbaraman R, Deshmukh SA, Sankaranarayanan SKRS (2013) Atomistic insights into early stage oxidation and nanoscale oxide growth on Fe(100), Fe(111) and Fe(110) surfaces. J Phys Chem C 117(10):5195–5207

    Article  Google Scholar 

  44. Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519

    Article  Google Scholar 

  45. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  Google Scholar 

  46. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  47. Maharjan PP, Chen Q, Zhang L et al (2013) Photovoltaic devices and characterization of a dodecyloxybenzothiadiazole-based copolymer. Phys Chem Chem Phys 15(18):6856

    Article  Google Scholar 

  48. Lu T, Chen Q (2022) Independent gradient model based on Hirshfeld partition: a new method for visual study of interactions in chemical systems. J Comput Chem 43(8):539–555

    Article  Google Scholar 

  49. Martin U, Bosch J, Ress J, Bastidas DM (2021) Long-term stability and electronic properties of passive film of lean-duplex stainless steel reinforcements in chloride containing mortar. Constr Build Mater 291:123319

    Article  Google Scholar 

  50. Balusamy T, Nishimura T (2016) In-situ monitoring of local corrosion process of scratched epoxy coated carbon steel in simulated pore solution containing varying percentage of chloride ions by localized electrochemical impedance spectroscopy. Electrochim Acta 199:305–313

    Article  Google Scholar 

  51. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546

    Article  Google Scholar 

  52. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    Article  Google Scholar 

  53. Wang M, Zhang K, Ji X, Wang P, Ma H, Zhang J, Hou D (2022) Molecular insight into the fluidity of cement pastes: nano-boundary lubrication of cementitious materials. Constr Build Mater 316:125800

    Article  Google Scholar 

  54. Sanz E, Vega C, Abascal JLF, MacDowell LG (2004) Phase diagram of water from computer simulation. Phys Rev Lett 92(25):255701

    Article  Google Scholar 

  55. Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39(2):315–323

    Article  Google Scholar 

  56. Wang M, Fang T, Zhong H, Li J, Yan Y, Zhang J (2019) Optimal aggregation number of reverse micelles in supercritical carbon dioxide: a theoretical perspective. Soft Matter 15(16):3323–3329

    Article  Google Scholar 

  57. Hou D, Zhang W, Sun M, Wang P, Wang M, Zhang J, Li Z (2020) Modified Lucas-Washburn function of capillary transport in the calcium silicate hydrate gel pore: a coarse-grained molecular dynamics study. Cem Concr Res 136:106166

    Article  Google Scholar 

  58. Ortmann F, Bechstedt F, Schmidt WG (2006) Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys Rev B 73(20):205101

    Article  Google Scholar 

  59. Hou D, Yu J, Liu Q, Dong B, Wang X, Wang P, Wang M (2020) Nanoscale insight on the epoxy-cement interface in salt solution: a molecular dynamics study. Appl Surf Sci 509:145322

    Article  Google Scholar 

  60. Wang M, Zhang K, Hou D, Wang P (2020) Microscopic insight into nanodiamond polymer composites: reinforcement, structural, and interaction properties. Nanoscale 12(47):24107–24118

    Article  Google Scholar 

  61. Wang M, Zhao Y, Zhang L, Deng J, Qi K, Zhou P, Ma X, Wang D, Li Z, Wang J, Yang J, Lu JR, Zhang J, Xu H (2021) Unexpected role of achiral glycine in determining the suprastructural handedness of peptide nanofibrils. ACS Nano 15(6):10328–10341

    Article  Google Scholar 

Download references

Acknowledgements

M. W. and D. H. financial support from the National Natural science foundation of China under Grant U2006224, 51978352, 51908308, 52178221, National key research and development project 2022YFE0133800, Natural science foundation of Shandong Province under Grant ZR2020QE253, ZR2020JQ25, Shandong Provincial Education Department under Grant 2019KJG010, Qingdao Research Program 16-5-1-96-jch.

Author information

Authors and Affiliations

Authors

Contributions

MW: Conceptualization, methodology, writing—original draft. SW: Data curation, writing—original draft. PW: Data curation. BD: Data curation. MM: Data curation. ZW: Writing—review and editing. JZ: Writing—review and editing. DH: Supervision, writing—review and editing.

Corresponding author

Correspondence to Dongshuai Hou.

Ethics declarations

Conflict of interest

The Authors declare no Competing Financial or Non-Financial Interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wu, S., Wang, P. et al. Nano-deterioration of steel passivation film: chloride attack in material defects. Mater Struct 56, 35 (2023). https://doi.org/10.1617/s11527-023-02121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02121-z

Keywords

Navigation