Skip to main content
Log in

Mechanism study of effect of superplasticizers on the fluidity of alkali-activated materials

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This work evaluates the application effect and mechanism of superplasticizers (SPs) in alkali-activated materials (AAM). Naphthalene superplasticizer (NS), aliphatic superplasticizer (AS) and polycarboxylate superplasticizer (PS) were selected, and three aluminosilicate precursors and two alkali activators were used to prepare AAM. The results showed that all three SPs cannot effectively improve the fluidity of AAM paste, but have certain plasticizing effect in AAM mortar. Both the molecular structure and absorption property of the three SPs changed in AAM. The activator NaOH had more serious damage to the molecular structure of SPs, while the competitive adsorption of Na2SiO3 to SPs was more intense. The intrinsic viscosity and infrared spectrum characteristic peak of AS were relatively stable, followed by NS, while the PS molecule was the most unstable in the alkaline environment. For precursors, metakaolin had the highest surface adsorption energy, resulting in its winding with the incomplete SPs molecule damaged by activator and a decrease in paste fluidity. For fly ash with a smooth surface and low calcium content, its absorption capacity to SPs was the worst, having the smallest adsorption layer thickness of SPs and |ζ| potential. Although the slag could form effective absorption with the anion of SPs, there was significant competition for calcium ions between the SPs and activators, causing the detachment of SPs from the slag surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xiao H, Zhang F, Miao L et al (2020) Long-term trends in Arctic surface temperature and potential causality over the last 100 years[J]. Clim Dyn 55:1–14

    Article  Google Scholar 

  2. Andrew RM (2018) Global CO2 emissions from cement production, 1928–2017[J]. Earth Syst Sci Data 10(4):2213–2239

    Article  Google Scholar 

  3. Shi C, Jiménez AF, Palomo A (2011) New cements for the 21st century: the pursuit of an alternative to Portland cement[J]. Cem Concr Res 41(7):750–763

    Article  Google Scholar 

  4. Deetman S, Marinova S, Van Der Voet E et al (2020) Modelling global material stocks and flows for residential and service sector buildings towards 2050[J]. J Clean Prod 245:118658

    Article  Google Scholar 

  5. Guiding opinions on comprehensive utilization of bulk solid Wastes during the "Fourteenth Five Year Plan

  6. Chu Z, Wang W, Zhou A et al (2019) Charging for municipal solid waste disposal in Beijing[J]. Waste Manag 94:85–94

    Article  Google Scholar 

  7. Aprianti E (2016) A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production a review part II[J]. Journal of Cleaner Production p S0959652616000305

  8. Juenger M, Bernal SA, Snellings R (2019) Supplementary cementitious materials: new sources, characterization, and performance insights[J]. Cem Concr Res 122:257–273

    Article  Google Scholar 

  9. Chindaprasirt P, Chareerat T, Sirivivatnanon V (2007) Workability and strength of coarse high calcium fly ash geopolymer[J]. Cement Concr Compos 29(3):224–229

    Article  Google Scholar 

  10. Nematollahi B, Sanjayan J (2014) Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer[J]. Mater Des 57:667–672

    Article  Google Scholar 

  11. Bakharev T, Sanjayan JG, Cheng YB (2000) Effect of admixtures on properties of alkali-activated slag concrete[J]. Cem Concr Res 30(9):1367–1374

    Article  Google Scholar 

  12. Palacios M, Puertas F (2005) Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars[J]. Cem Concr Res 35(7):1358–1367

    Article  Google Scholar 

  13. Ruan S, Chen S, Zhu X et al (2021) Matrix wettability and mechanical properties of geopolymer cement-polydimethylsiloxane (PDMS) hybrids[J]. Cem Concr Compos 124:104268

    Article  Google Scholar 

  14. Provis JL, Palomo A, Shi C (2015) Advances in understanding alkali-activated materials[J]. Cem Concr Res 78:110–125

    Article  Google Scholar 

  15. Zhang Z, Zhu Y, Yang T et al (2017) Conversion of local industrial wastes into greener cement through geopolymer technology: a case study of high-magnesium nickel slag[J]. J Clean Prod 141:463–471

    Article  Google Scholar 

  16. Davidovits J (1989) Geopolymers and geopolymeric materials[J]. J Therm Anal 35:429–441

    Article  Google Scholar 

  17. Aiken TA, Sha W, Kwasny J et al (2017) Resistance of geopolymer and Portland cement based systems to silage effluent attack[J]. Cem Concr Res 92:56–65

    Article  Google Scholar 

  18. Kong DLY, Sanjayan JG (2010) Effect of elevated temperatures on geopolymer paste, mortar and concrete[J]. Cem Concr Res 40(2):334–339

    Article  Google Scholar 

  19. Singh B, Ishwarya G, Gupta M et al (2015) Geopolymer concrete: a review of some recent developments[J]. Constr Build Mater 85:78–90

    Article  Google Scholar 

  20. Provis JL, Bernal SA (2014) Geopolymers and related alkali-activated materials, clarke DR, editor. Annu Rev Mater Res 44:299–327

    Article  Google Scholar 

  21. Puertas F, Varga C, Alonso MM (2014) Rheology of alkali-activated slag pastes. effect of the nature and concentration of the activating solution[J]. Cem Concr Compos 53:279–288

    Article  Google Scholar 

  22. Rakngan W, Williamson T, Ferron RD et al (2018) Controlling workability in alkali-activated class C fly ash[J]. Constr Build Mater 183:226–233

    Article  Google Scholar 

  23. Hallal A, Kadri EH, Ezziane K et al (2010) Combined effect of mineral admixtures with superplasticizers on the fluidity of the blended cement paste[J]. Constr Build Mater 24(8):1418–1423

    Article  Google Scholar 

  24. Morin V, Tenoudji FC, Feylessoufi A et al (2001) Superplasticizer effects on setting and structuration mechanisms of ultrahigh-performance concrete - ScienceDirect[J]. Cem Concr Res 31(1):63–71

    Article  Google Scholar 

  25. Robert CR, Sathyan D, Anand KB (2018) Effect of superplasticizers on the rheological properties of fly ash incorporated cement paste-sciencedirect[J]. Mater Today Proceed 5(11):23955–23963

    Article  Google Scholar 

  26. Sun Z, Liu H, Ji Y et al (2020) Influence of glycerin grinding aid on the compatibility between cement and polycarboxylate superplasticizer and its mechanism[J]. Constr Build Mater 233:117104

    Article  Google Scholar 

  27. Douglas E, Brandstetr J (1990) A preliminary study on the alkali activation of ground granulated blast-furnace slag[J]. Cem Concr Res 20(5):746–756

    Article  Google Scholar 

  28. Criado M, Palomo A, Fernández-Jiménez A et al (2009) Alkali activated fly ash: effect of admixtures on paste rheology[J]. Rheol Acta 48(4):447–455

    Article  Google Scholar 

  29. Conte T, Plank J (2019) Impact of molecular structure and composition of polycarboxylate comb polymers on the flow properties of alkali-activated slag[J]. Cem Concr Res 116:95–101

    Article  Google Scholar 

  30. Jang JG, Lee NK, Lee HK (2014) Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers[J]. Constr Build Mater 50:169–176

    Article  Google Scholar 

  31. Luukkonen T, Abdollahnejad Z, Ohenoja K et al (2019) Suitability of commercial superplasticizers for one-part alkali-activated blast-furnace slag mortar[J]. J Sustain Cem-Based Mater 8(4):244–257

    Google Scholar 

  32. Memon FA, Nuruddin MF, Demie S et al (2012) Effect of superplasticizer and extra water on workability and compressive strength of self-compacting geopolymer concrete[J]. Res J Appl Sci Eng Technol 4(5):407–414

    Google Scholar 

  33. Hardijito D, Wallah SE, Sumajouw DMJ et al (2004) On the development of fly ash-based geopolymer concrete[J]. ACI Mater J 101(6):467–472

    Google Scholar 

  34. Palacios M, Houst YF, Bowen P et al (2009) Adsorption of superplasticizer admixtures on alkali-activated slag pastes[J]. Cem Concr Res 39(8):670–677

    Article  Google Scholar 

  35. Carabba L, Manzi S, Bignozzi MC (2016) Superplasticizer addition to carbon fly ash geopolymers activated at room temperature[J]. Materials 9(7):586

    Article  Google Scholar 

  36. Mohamed AK, Weckwerth SA, Mishra RK, Heinz H, Flatt RJ (2022) Molecular modeling of chemical admixtures; opportunities and challenges[J]. Cem Concr Res 156:106783

    Article  Google Scholar 

  37. Liao Y, Zheng H, Qian L et al (2014) UV-initiated polymerization of hydrophobically associating cationic polyacrylamide modified by a surface-active monomer: a comparative study of synthesis, characterization, and sludge dewatering performance[J]. Ind Eng Chem Res 53(27):11193–11203

    Article  Google Scholar 

  38. Yilmaz VT, Kindness A, Glasser FP (1992) Determination of sulphonated naphthalene formaldehyde superplasticizer in cement: a new spectrofluorimetric method and assessment of the UV method[J]. Cem Concr Res 22(4):663–670

    Article  Google Scholar 

  39. Tong K, Song X, Sun S et al (2014) Molecular dynamics study of linear and comb-like polyelectrolytes in aqueous solution: effect of Ca2+ ions[J]. Mol Phys 112(16):2176–2183

    Article  Google Scholar 

  40. Qi H, Ma B, Tan H et al (2020) Effect of sodium gluconate on molecular conformation of polycarboxylate superplasticizer studied by the molecular dynamics simulation[J]. J Mol Model 26(3):45

    Article  Google Scholar 

  41. Ma B, Qi H, Tan H et al (2020) Effect of aliphatic-based superplasticizer on rheological performance of cement paste plasticized by polycarboxylate superplasticizer[J]. Constr Build Mater 233:117181

    Article  Google Scholar 

  42. Rahier H, Wastiels J, Biesemans M et al (2006) Reaction mechanism, kinetics and high temperature transformations of geopolymers[J]. J Mater Sci 42(9):2982–2996

    Article  Google Scholar 

  43. Brock A, Luty et al (1996) Calculating electrostatic interactions using the particleparticle particlemesh method with nonperiodic long-range interactions[J]. The J Phys Chem B 100(7):2581–2587

    Article  Google Scholar 

  44. Isele-Holder RE, Mitchell W, Ismail AE (2012) Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions[J]. J Chem Phys 137(17):174107

    Article  Google Scholar 

  45. Palacios M, Alonso MM, Varga C et al (2019) Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes[J]. Cement Concr Compos 95:277–284

    Article  Google Scholar 

  46. Kashani A, Provis JL, Qiao GG et al (2014) The interrelationship between surface chemistry and rheology in alkali activated slag paste[J]. Constr Build Mater 65:583–591

    Article  Google Scholar 

  47. Childs CM, Perkins KM, Menon A et al (2019) Interplay of anionic functionality in polymer-grafted lignin superplasticizers for portland cement[J]. Ind Eng Chem Res 58(43):19760–19766

    Article  Google Scholar 

  48. Alrefaei Y, Wang Y-S, Dai J-G (2021) Effect of mixing method on the performance of alkali-activated fly ash/slag pastes along with polycarboxylate admixture[J]. Cem Concr Compos 117:103917

    Article  Google Scholar 

  49. Li H, Wang Z, Zhang Y et al (2021) Composite application of naphthalene and melamine-based superplasticizers in alkali activated fly ash (AAFA)[J]. Constr Build Mater 297:123651

    Article  Google Scholar 

  50. Termkhajornkit P, Nawa T (2004) The fluidity of fly ash–cement paste containing naphthalene sulfonate superplasticizer[J]. Cem Concr Res 34(6):1017–1024

    Article  Google Scholar 

  51. Alrefaei Y, Wang Y-S, Dai J-G (2019) The effectiveness of different superplasticizers in ambient cured one-part alkali activated pastes[J]. Cem Concr Compos 97:166–174

    Article  Google Scholar 

  52. Habbaba A, Plank J, Jantzen C (2012) Surface chemistry of ground granulated blast furnace slag in cement pore solution and its impact on the effectiveness of polycarboxylate superplasticizers[J]. J Am Ceram Soc 95(2):768–775

    Article  Google Scholar 

  53. Wu YH, Bai QQ, Zhou SS et al (2016) Adsorption behavior of polycarboxylate superplasticizer on cement, slag and fly ash particulates[J]. Bull Chin Ceram Soc 35(01):279–284

    Google Scholar 

  54. Hu SG (1993) Analyses on the structure of the interfacial bond layer between polymer and cement[J]. J WuhanUniv Technol 04:12–17

    Google Scholar 

  55. Uchikawa H, Hanehara S, Shirasaka T et al (1992) Effect of admixture on hydration of cement, adsorptive behavior of admixture and fluidity and setting of fresh cement paste[J]. Cem Concr Res 22(6):1115–1129

    Article  Google Scholar 

  56. Wang Z, Cui Y, Wang Z et al (2005) Adsorptive characteristics and action mode of aliphatic superplasticizer[J]. J WuhanUniv Technol 09:42–45

    Google Scholar 

  57. Kashani A, Provis JL, Xu J et al (2014) Effect of molecular architecture of polycarboxylate ethers on plasticizing performance in alkali-activated slag paste[J]. J Mater Sci 49(7):2761–2772

    Article  Google Scholar 

  58. Li S, Zhang J, Li Z et al (2020) Feasibility study of red mud-blast furnace slag based geopolymeric grouting material: Effect of superplasticizers[J]. Constr Build Mater 267:120910

    Article  Google Scholar 

  59. Fernández-Jiménez A, Palomo JG, Puertas F (1999) Alkali-activated slag mortars: mechanical strength behaviour[J]. Cem Concr Res 29(8):1313–1321

    Article  Google Scholar 

  60. Plank J, Sachsenhauser B (2009) Experimental determination of the effective anionic charge density of polycarboxylate superplasticizers in cement pore solution[J]. Cem Concr Res 39(1):1–5

    Article  Google Scholar 

  61. Qin L, Gao X, Chen T (2018) Recycling of raw rice husk to manufacture magnesium oxysulfate cement based lightweight building materials[J]. J Clean Prod 191:220–232

    Article  Google Scholar 

  62. Zhao H, Yang Y, Wang Y et al (2018) Binding of calcium cations with three different types of oxygen-based functional groups of superplasticizers studied by atomistic simulations[J]. J Mol Model 24(11):321

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially funded by the National Natural Science Foundation of China (51878421), Natural Science Foundation of Hebei Province (E2021210128) and Central Government Foundation for Guiding Local Science and Technology Development (216Z3801G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Kong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Kong, L., Lu, J. et al. Mechanism study of effect of superplasticizers on the fluidity of alkali-activated materials. Mater Struct 56, 29 (2023). https://doi.org/10.1617/s11527-023-02120-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02120-0

Keywords

Navigation