Skip to main content
Log in

Durability of concrete made with recycled concrete aggregates after exposure to elevated temperatures

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The behaviour of concrete made with recycled concrete aggregates (RCA) at room temperature is well-studied. However, some points still need to be addressed, especially in extreme conditions such as durability and high temperature. This paper evaluates the effect of elevated temperatures on the durability of concrete made with RCA. Three concrete mixes were studied: concrete with NA (reference), \({100}\,\%\) direct replacement (DR) mix (RCA-100-DR) and \({100}\,\%\) strength-based replacement (SBR) mix (RCA-100-SBR). The latter was designed to achieve the same performance as concrete made with NA. Mixes were exposed to temperatures of \({200}\,^\circ \hbox {C}\), \({400}\,^\circ \hbox {C}\) and \({600}\,^\circ \hbox {C}\). After cooling, durability-loss due to thermal exposure was evaluated through water porosity, capillary water absorption, permeability, chloride diffusion and accelerated carbonation tests. At room temperature, the direct addition of RCA decreased all durability parameters. The SBR mix recovered some of the durability properties. Exposure to high temperatures decreases all the properties, but it varies depending on the property. The concrete made with NA and the SBR mix showed similar performance. The durability was also evaluated using a performance-based approach, both at room and high-temperature. The proposed approaches showed potential to evaluate durability indicators, but they should be considered with precaution. Overall, concrete made with RCA reduces the durability of concrete, with or without heat damage, but this decrease can be reduced with proper mix optimization. These evaluations contribute to the post-heating durability of concrete structures made with RCA, which is fundamental to the post-fire assessment of concrete structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

All experimental data that support the findings of this study can be obtained from the corresponding author.

References

  1. de Brito J, Saikia N (2013) Recycled aggregate in concrete. Springer, London, p 448. https://doi.org/10.1007/978-1-4471-4540-0

    Book  Google Scholar 

  2. Shi C, Li Y, Zhang J, Li W, Chong L, Xie Z (2016) Performance enhancement of recycled concrete aggregate - A review. J Clean Prod 112:466–472. https://doi.org/10.1016/j.jclepro.2015.08.057

    Article  Google Scholar 

  3. Nedeljković M, Visser J, Šavija B, Valcke S, Schlangen E (2021) Use of fine recycled concrete aggregates in concrete: a critical review. J Build Eng 38:102196. https://doi.org/10.1016/j.jobe.2021.102196

    Article  Google Scholar 

  4. Le H-b, Bui Q-B (2020) Recycled aggregate concretes - A state-of-the-art from the microstructure to the structural performance. Constr Build Mater 257:119522. https://doi.org/10.1016/j.conbuildmat.2020.119522

    Article  Google Scholar 

  5. de Larrard F, Colina H (2019) Conclusion. In: de Larrad F, Colina H (eds) Concrete recycling: research and practice. CRC Press, Boca Raton, pp 544–545

    Chapter  Google Scholar 

  6. Behera M, Bhattacharyya SK, Minocha AK, Deoliya R, Maiti S (2014) Recycled aggregate from C &D waste & its use in concrete - A breakthrough towards sustainability in construction sector: a review. Constr Build Mater 68:501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003

    Article  Google Scholar 

  7. Wang R, Yu N, Li Y (2020) Methods for improving the microstructure of recycled concrete aggregate?: a review. Constr Build Mater 242:118164. https://doi.org/10.1016/j.conbuildmat.2020.118164

    Article  Google Scholar 

  8. Guo H, Shi C, Guan X, Zhu J, Ding Y, Ling TC, Zhang H, Wang Y (2018) Durability of recycled aggregate concrete - A review. Cement Concr Compos 89:251–259. https://doi.org/10.1016/j.cemconcomp.2018.03.008

    Article  Google Scholar 

  9. Fernandes B, Carré H, Mindeguia J-C, Perlot C, La Borderie C (2021) Effect of elevated temperatures on concrete made with recycled concrete aggregates-an overview. J Build Eng 74:103235. https://doi.org/10.1016/j.jobe.2021.103235

    Article  Google Scholar 

  10. Kou SC, Poon CS, Etxeberria M (2014) Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures. Cement Concr Compos 53:73–82. https://doi.org/10.1016/j.cemconcomp.2014.06.001

    Article  Google Scholar 

  11. Xuan D, Zhan B, Poon CS (2017) Thermal and residual mechanical profile of recycled aggregate concrete prepared with carbonated concrete aggregates after exposure to elevated temperatures. Fire Mater 42(1):134–142. https://doi.org/10.1002/fam.2465

    Article  Google Scholar 

  12. Laneyrie C, Beaucour A-L, Green MF, Hebert RL, Ledesert B, Noumowe A (2016) Influence of recycled coarse aggregates on normal and high performance concrete subjected to elevated temperatures. Constr Build Mater 111:368–378. https://doi.org/10.1016/j.conbuildmat.2016.02.056

    Article  Google Scholar 

  13. Ma Z, Ba G, Duan Z (2019) Effects of high temperature and cooling pattern on the chloride permeability of concrete. Adv Civil Eng. https://doi.org/10.1155/2019/2465940

    Article  Google Scholar 

  14. Ma Z, Liu M, Tang Q, Liang C, Duan Z (2020) Chloride permeability of recycled aggregate concrete under the coupling effect of freezing-thawing, elevated temperature or mechanical damage. Constr Build Mater 237:117648. https://doi.org/10.1016/j.conbuildmat.2019.117648

    Article  Google Scholar 

  15. Valente Monteiro A, Vieira M (2021) Effect of elevated temperatures on the residual durability-related performance of concrete. Mater Struct 54(6):13–15. https://doi.org/10.1617/s11527-021-01824-5

    Article  Google Scholar 

  16. Comité Européen de Normalisation: NF EN 206/CN: Béton - Spécification, Performance, Production et Conformité - Complément National à la Norme NF EN 206. Brussels (2014). Comité Européen de Normalisation

  17. de Larrard F, Sedran T BetonLab (2021). https://betonlabpro.ifsttar.fr/

  18. Fernandes B, Carré H, Mindeguia J-C, Perlot C, La Borderie C (2022) Spalling behaviour of concrete made with recycled concrete aggregates. Constr Build Mater 344:128124. https://doi.org/10.1016/j.conbuildmat.2022.128124

    Article  Google Scholar 

  19. Fernandes B (2022) Fire behaviour, spalling and residual durability of concrete made with recycled concrete aggregates. PhD thesis, Université de Pau et des Pays de l’Adour

  20. Comité Européen de Normalisation: NF EN 12350-2: Testing fresh concrete - Part 2 : slump test. Brussels (2019). Comité Européen de Normalisation

  21. Comité Européen de Normalisation: NF EN 12390-3: testing hardened concrete - Part 3 : compressive strength of test specimens. Brussels (2019). Comité Européen de Normalisation

  22. Comité Européen de Normalisation: NF EN 12390-6: testing hardened concrete - Part 6 : tensile splitting strength of test specimens. Brussels (2012). Comité Européen de Normalisation

  23. Comité Européen de Normalisation: NF EN 12390-13: Testing hardened concrete - Part 13 : determination of secant modulus of elasticity in compression. Brussels (2021). Comité Européen de Normalisation

  24. Association Française de recherches et d’essais sur les matériaux et constructions: APC-AFREM: Durabilité des Betons - Méthodes Recommandés Pour la Mesure des Granulats Associées a la durabilité. Toulouse (1997). Association Française de recherches et d’essais sur les matériaux et constructions

  25. Kollek JJ (1989) The determination of the permeability of concrete to oxygen by the Cembureau method-a recommendation. Mater Struct 22(3):225–230. https://doi.org/10.1007/BF02472192

    Article  Google Scholar 

  26. PCD RT (1999) Permeability of concrete as a criterion of its durability. Mater Struct 32: 174–179

  27. Klinkenberg L (1941) The permeability of porous media to liquids and gases. In: Drilling and production practice, 200–214. American Petroleum Institute

  28. Miah MJ, Kallel H, Carré H, Pimienta P, La Borderie C (2019) The effect of compressive loading on the residual gas permeability of concrete. Constr Build Mater 217:12–19. https://doi.org/10.1016/j.conbuildmat.2019.05.057

    Article  Google Scholar 

  29. Carré H, Perlot C, Daoud A, Miah MJ, Aidi B (2016) Durability of ordinary concrete after heating at high temperature. In: Key engineering materials, 711: 428–435. Trans Tech Publ

  30. Truc O, Ollivier JP, Carcassès M (2000) A new way for determining the chloride diffusion coefficient in concrete from steady state migration test. Cem Concr Res 30(2):217–226. https://doi.org/10.1016/S0008-8846(99)00232-X

    Article  Google Scholar 

  31. Perlot C, Verdier J, Carcassès M (2006) Influence of cement type on transport properties and chemical degradation: application to nuclear waste storage. Mater Struct 39(5):511–523. https://doi.org/10.1617/s11527-005-9020-9

    Article  Google Scholar 

  32. Rozière E, Loukili A, Cussigh F (2009) A performance based approach for durability of concrete exposed to carbonation. Constr Build Mater 23(1):190–199. https://doi.org/10.1016/j.conbuildmat.2008.01.006

    Article  Google Scholar 

  33. Association Française de Normalization: XP P18-458: Essai Pour Béton Durci - Essai de Carbonatation Accélérée - Mesure de L’épaisseur de Béton Carbonaté. (2008). Association Française de Normalization

  34. Beushausen H, Alexander MG, Basheer MG, Baroghel-Bouny V, d’Andréa R, Gonçalves A, Gulikers J, Jacobs F, Khrapko M, Monteiro AV, Nanukuttan SV, Otieno M, Polder R, Torrent R (2016) Principles of the performance-based approach for concrete durability. In: Beushausen H, Luco LF (eds) Performance-based specification and ccntrol of concrete durability: specifications state-of-the-art report RILEM TC 230-PSC. Springer, London, pp 107–131

    Chapter  Google Scholar 

  35. Auroy M, Poyet S, Le Bescop P, Torrenti JM, Charpentier T, Moskura M, Bourbon X (2018) Comparison between natural and accelerated carbonation (3% CO2): impact on mineralogy, microstructure, water retention and cracking. Cem Concr Res 109:64–80. https://doi.org/10.1016/j.cemconres.2018.04.012

    Article  Google Scholar 

  36. Castellote M, Fernandez L, Andrade C, Alonso C (2009) Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations. Mater Struct 42(4):515–525. https://doi.org/10.1617/s11527-008-9399-1

    Article  Google Scholar 

  37. Sisomphon K, Franke L (2007) Carbonation rates of concretes containing high volume of pozzolanic materials. Cem Concr Res 37(12):1647–1653. https://doi.org/10.1016/j.cemconres.2007.08.014

    Article  Google Scholar 

  38. Rougeau P, Schmitt L, Mai-Nhu J, Djerbi A, Sailio M, Ghorbel E, Mechling JM, Lecomte A, Trauchessec R, Bulteel D, Cyr M, Leklou N, Amiri O, Moulin I, Lenormand T (2019) Durability-related properties. In: de Larrad F, Colina H (eds) Concrete recycling: research and practice. CRC Press, Boca Raton, pp 214–250

    Google Scholar 

  39. Mindeguia J-C, Pimienta P, Carré H, La Borderie C (2012) On the influence of aggregate nature on concrete behaviour at high temperature. Eur J Environ Civ Eng 16(2):236–253. https://doi.org/10.1080/19648189.2012.667682

    Article  Google Scholar 

  40. Pimienta P, Alonso MC, Jansson McNamee R, Mindeguia J-C (2017) Behaviour of high-performance concrete at high temperatures: some highlights. RILEM Tech Lett 2(2017):45. https://doi.org/10.21809/rilemtechlett.2017.53

  41. Kwan WH, Ramli M, Kam KJ, Sulieman MZ (2012) Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Constr Build Mater 26(1):565–573. https://doi.org/10.1016/j.conbuildmat.2011.06.059

    Article  Google Scholar 

  42. Gonçalves A, Esteves A, Vieira M (2004) Influence of recycled concrete aggregates on concrete durability. In: international RILEM conference on the use of recycled materials in buildings and structures, 554–562. RILEM Publications SARL

  43. Kou SC, Poon CS (2012) Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Constr Build Mater 35:69–76. https://doi.org/10.1016/j.conbuildmat.2012.02.032

    Article  Google Scholar 

  44. Ghasemzadeh F, Pour-Ghaz M (2015) Effect of damage on moisture transport in concrete. J Mater Civ Eng 27(9):04014242. https://doi.org/10.1061/(asce)mt.1943-5533.0001211

    Article  Google Scholar 

  45. Wang L, Zhang Q (2021) Investigation on water absorption in concrete after subjected to compressive fatigue loading. Constr Build Mater 299:123897. https://doi.org/10.1016/j.conbuildmat.2021.123897

    Article  Google Scholar 

  46. Evangelista L, de Brito J (2010) Durability performance of concrete made with fine recycled concrete aggregates. Cement Concr Compos 32(1):9–14. https://doi.org/10.1016/j.cemconcomp.2009.09.005

    Article  Google Scholar 

  47. Gomes M, De Brito J (2009) Structural concrete with incorporation of coarse recycled concrete and ceramic aggregates: durability performance. Mater Struct 42(5):663–675. https://doi.org/10.1617/s11527-008-9411-9

    Article  Google Scholar 

  48. Silva RV, Neves R, De Brito J, Dhir RK (2015) Carbonation behaviour of recycled aggregate concrete. Cement Concr Compos 62:22–32. https://doi.org/10.1016/j.cemconcomp.2015.04.017

    Article  Google Scholar 

  49. Dhir R, Limbachiya M, Leelawat T (1999) Suitability of recycled concrete aggregate for use in bs 5328 designated mixes. Proc Inst Civil Eng-Struct Build 134(3):257–274

    Article  Google Scholar 

  50. Kaid N, Cyr M, Julien S, Khelafi H (2009) Durability of concrete containing a natural pozzolan as defined by a performance-based approach. Constr Build Mater 23(12):3457–3467. https://doi.org/10.1016/j.conbuildmat.2009.08.002

    Article  Google Scholar 

  51. San Nicolas R, Cyr M, Escadeillas G (2014) Performance-based approach to durability of concrete containing flash-calcined metakaolin as cement replacement. Constr Build Mater 55:313–322. https://doi.org/10.1016/j.conbuildmat.2014.01.063

    Article  Google Scholar 

  52. Idir R, Cyr M, Pavoine A (2020) Investigations on the durability of alkali-activated recycled glass. Constr Build Mater 236:117477. https://doi.org/10.1016/j.conbuildmat.2019.117477

    Article  Google Scholar 

  53. Bucher R, Cyr M, Escadeillas G (2021) Performance-based evaluation of flash-metakaolin as cement replacement in marine structures - case of chloride migration and corrosion. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.120926

    Article  Google Scholar 

  54. Association Française de Génie Civil: Conception des Bétons Pour Une Durée de Vie Donnée des Ouvrages - Maîtrise de la Durabilité Vis-à-vis de la Corrosion des Armatures et de L’alcali-réaction. Paris (2004). Association Française de Génie Civil

Download references

Acknowledgements

The authors would like to thank the support of Groupe Cassous (Guyenne Environnement and AQIO) and Groupe Garandeau.

Funding

This study was funded by Région Nouvelle-Aquitaine (project RECYFEU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Fernandes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, B., Khodeir, M., Perlot, C. et al. Durability of concrete made with recycled concrete aggregates after exposure to elevated temperatures. Mater Struct 56, 25 (2023). https://doi.org/10.1617/s11527-023-02111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02111-1

Keywords

Navigation