Skip to main content

Advertisement

Log in

How are alkali-activated materials impacted by incorporating low viscosity organic liquids?

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This research determines an adequate alkali-activated material (AAM) for the incorporation of huge amounts (20 or 40% vol) of low viscosity organic liquids (LVOL), e.g. for waste stabilization/solidification. The selected AAM are either based on high-Ca content blast furnace slag, or on low Ca-content metakaolin, i.e. on a geopolymer matrix. First, the selection of the AAM is performed to ensure no LVOL leakage and a sufficient compressive strength fc (> 8 MPa). Surfactants are compulsory to allow incorporation. After 90 days curing, for slag pastes, fc ranges between 10 and 20 MPa at 20% vol LVOL, but it is zero at 40% LVOL, whatever the surfactant. For geopolymer pastes, the AAM-LVOL composites have an average fc of 25 MPa at 20% vol LVOL, and of 15 MPa at 40% LVOL. With surfactant, the AAM solid pore structure of slag pastes is denser (with smaller specific surface area and micropore amount); it is unchanged for geopolymer pastes. Whatever the surfactant, air entrained bubbles are present. Their proportion is maximal with Glucopon. Together with LVOL presence, this generally contributes to decreasing fc. The emulsion (entrained air + LVOL droplets) is characterized in hardened AAM by combining 2D Scanning Electron Microscopy and 3D X Ray micro-computed tomography. Surfactants significantly decrease the emulsion droplet size distribution. For geopolymer pastes up to 40% vol LVOL, the most adequate surfactants are Brij O10 and CTAB; for slag paste up to 20% vol LVOL, it is CTAB. Moreover, the setting reactions are not impacted by LVOL or surfactants, and neither are the reaction products. It is concluded that the decrease in mechanical performance of AAM-LVOL composites is only due to physical reasons, particularly the decrease in AAM proportion, the emulsion quality (coalescence, droplet size and shape) and air entrained bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5:
Fig. 6:
Fig. 7:
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Coalescence of emulsion droplets means that two individual droplets merge and form a single larger droplet ([20]. The asymptotic case is the complete separation of the emulsion into two distinct liquid phases (here AAM and OL).

  2. The so-called Pickering effect occurs in an aqueous phase loaded with solid particles, where an oil emulsion is also present. It is a mechanism where solid particles are partially wetted by the oil phase and by the aqueous phase. The solid particles accumulated at the oil/water interface contribute to stabilize the emulsion ([20].

  3. A macroscopic void is observed in the GEO paste containing 40%vol. of LVOL + surfactant, due to air incorporation during mixing. For this paste, the addition of surfactant leads to a strong increase in viscosity. For further composite manufacturing, this will require vibrating the mold, to remove any such void.

References

  1. IAEA International Atomic Energy Agency (1992) Treatment and conditioning of radioactive organic liquids. TECDOC 656

  2. Cantarel V, Nouaille F, Rooses A, Lambertin D, Poulesquen A, Frizon F (2015) Solidification/stabilisation of liquid oil waste in metakaolin-based geopolymer. J Nucl Mater 464:16–19. https://doi.org/10.1016/j.jnucmat.2015.04.036

    Article  Google Scholar 

  3. Cantarel V, Lambertin D, Poulesquen A, Leroux F, Renaudin G, Frizon F (2018) Geopolymer assembly by emulsion templating: emulsion stability and hardening mechanisms. Ceram Int 44(9):10558–10568. https://doi.org/10.1016/j.ceramint.2018.03.079

    Article  Google Scholar 

  4. Cuccia V, Freire CB, Ladeira ACQ (2020) Radwaste oil immobilization in geopolymer after non-destructive treatment. Prog Nucl Energy 122:103246. https://doi.org/10.1016/j.pnucene.2020.103246

    Article  Google Scholar 

  5. Almabrok MH, McLaughlan R, and Vessalas K (2011) Investigation of oil solidification using direct immobilization method, presented at the Environmental Research Event, Sydney, Australia

  6. Clark DE, Colombo P, Neilson RM (1982) Solidification of oils and organic liquids. Nucl Waste Manag. https://doi.org/10.2172/6462993

    Article  Google Scholar 

  7. Eddhahak A, Drissi S, Colin J, Caré S, Neji J (2014) Effect of phase change materials on the hydration reaction and kinetic of PCM-mortars. J Therm Anal Calorim 117(2):537–545. https://doi.org/10.1007/s10973-014-3844-x

    Article  Google Scholar 

  8. Masrulita M, Burhan P, Trihadiningrum Y (2018) Stabilization/solidification of waste containing heavy metals and hydrocarbons using OPC and land tras cement. J Ecol Eng 19(6):88–96. https://doi.org/10.12911/22998993/92926

    Article  Google Scholar 

  9. Almabrok MH, McLaughlan RG, Vessalas K, Thomas P (2019) Effect of oil contaminated aggregates on cement hydration. Am J Eng Res 8(5):81–89

    Google Scholar 

  10. Ahdaya M, Imqam A (2019) Investigating geopolymer cement performance in presence of water based drilling fluid. J Pet Sci Eng 176:934–942. https://doi.org/10.1016/j.petrol.2019.02.010

    Article  Google Scholar 

  11. El-Naggar MR, El-Sherief EA, Mekhemar HS (2018) Performance of geopolymers for direct immobilization of solvent extraction liquids: metakaolin/LIX-84 formulations. J Hazard Mater 360:670–680. https://doi.org/10.1016/j.jhazmat.2018.08.057

    Article  Google Scholar 

  12. Planel B, Davy CA, Adler PM, Hauss G, Bertin M, Cantarel V, Lambertin D (2020) Water permeability of geopolymers emulsified with oil. Cem Concr Res 135:106108. https://doi.org/10.1016/j.cemconres.2020.106108

    Article  Google Scholar 

  13. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  14. Provis JL, Bernal SA (2014) Geopolymers and related alkali-activated materials. Annu Rev Mater Res 44(1):299–327. https://doi.org/10.1146/annurev-matsci-070813-113515

    Article  Google Scholar 

  15. Singh B, Ishwarya G, Gupta M, Bhattacharyya SK (2015) Geopolymer concrete: a review of some recent developments. Constr Build Mater 85:78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036

    Article  Google Scholar 

  16. Provis JL, van Deventer JSJ (2014) Alkali activated materials. State-of-the-Art Report, RILEM TC 224-AAM

  17. Reeb C, Pierlot C, Davy C, Lambertin D (2020) Incorporation of organic liquids into geopolymer materials - a review of processing, properties and applications. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.11.239

    Article  Google Scholar 

  18. Lambertin D, Rooses A, and Frizon F (2014) Process for preparing a composite material from an organic liquid and resulting material. WO2014/044776 A1

  19. Davy CA, Hauss G, Planel B, Lambertin D (2018) 3D structure of oil droplets in hardened geopolymer emulsions. J Am Ceram Soc. https://doi.org/10.1111/jace.16142

    Article  Google Scholar 

  20. Sun Z, Vollpracht A (2019) One year geopolymerisation of sodium silicate activated fly ash and metakaolin geopolymers. Cem Concr Compos 95:98–110. https://doi.org/10.1016/j.cemconcomp.2018.10.014

    Article  Google Scholar 

  21. Pierlot C, Hu H, Reeb C, Bassetti J, Bertin M, Lambertin D, Davy C, Nardello-Rataj V (2022) Selection of suitable surfactants for the incorporation of organic liquids into fresh geopolymer pastes. Chem Eng Sci. https://doi.org/10.1016/j.ces.2022.117635x

    Article  Google Scholar 

  22. Petlitckaia S, Poulesquen A (2019) Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide. Ceram Int. https://doi.org/10.1016/j.ceramint.2018.10.021

    Article  Google Scholar 

  23. Dong T, Xie S, Wang J, Zhao G, Song Q (2020) Solidification and stabilization of spent TBP/OK organic liquids in a phosphate acid-based geopolymer. Sci Technol Nucl Install 2020:1–7. https://doi.org/10.1155/2020/8094205

    Article  Google Scholar 

  24. Kligys M, Laukaitis A, Sinica M, Sezemanas G (2007) The influence of some surfactants on porous concrete properties. Math Sci 13:310–316

    Google Scholar 

  25. Ouyang X, Guo Y, Qiu X (2008) The feasibility of synthetic surfactant as an air entraining agent for the cement matrix. Constr Build Mater 22(8):1774–1779. https://doi.org/10.1016/j.conbuildmat.2007.05.002

    Article  Google Scholar 

  26. Yan D et al (2021) Effects and mechanisms of surfactants on physical properties and microstructures of metakaolin-based geopolymer. J Zhejiang Univ Sci A 22(2):130–146. https://doi.org/10.1631/jzus.A2000059

    Article  Google Scholar 

  27. Blyth A, Eiben CA, Scherer GW, White CE (2017) Impact of activator chemistry on permeability of alkali-activated slags. J Am Ceram Soc 100:4848–4859. https://doi.org/10.1111/jace.14996

    Article  Google Scholar 

  28. [Pickering 1907] CXCVI.—Emulsions. J Chem Soc Trans 1907, 91: 2001–2021. Doi: https://doi.org/10.1039/CT9079102001

  29. Haha MB, Le Saout G, Winnefeld F, Lothenbach B (2011) Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem Concr Res 41(3):301–310. https://doi.org/10.1016/j.cemconres.2010.11.016

    Article  Google Scholar 

  30. Peix G, Duvauchelle P, Freud N (2000) X-Ray tomography in material science (Hermes Science, London), Chap 1: 15–27

  31. N. Limodin, T. Rougelot, J. Hosdez, 2013, http://isis4d.univ-lille.fr/

  32. Song Y, Davy CA, Troadec D, Blanchenet A-M, Skoczylas F, Talandier J, Robinet JC (2015) Multi-scale pore structure of COx claystone: towards the prediction of fluid transport. Mar Pet Geol 65:63–82. https://doi.org/10.1016/j.marpetgeo.2015.04.004

    Article  Google Scholar 

  33. Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press, Piscataway, NJ

    MATH  Google Scholar 

  34. Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. Soc Ind Appl Math. https://doi.org/10.1137/1.9780898719277

    Article  MATH  Google Scholar 

  35. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676

    Article  Google Scholar 

  36. Münch B, Holzer L (2008) Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion. J Am Ceram Soc 91(12):4059–4067. https://doi.org/10.1111/j.1551-2916.2008.02736.x

    Article  Google Scholar 

  37. Massiot D et al (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40(1):70–76. https://doi.org/10.1002/mrc.984

    Article  Google Scholar 

  38. Behfarnia K, Rostami M (2017) An assessment on parameters affecting the carbonation of alkali-activated slag concrete. J Clean Prod 157:1–9. https://doi.org/10.1016/j.jclepro.2017.04.097

    Article  Google Scholar 

  39. Bulejko P, Bílek V (2017) Influence of chemical additives and curing conditions on the mechanical properties and carbonation resistance of alkali-activated slag composites. Mater Technol 51:49–53. https://doi.org/10.17222/mit.2015.185

    Article  Google Scholar 

  40. Song K-I, Song J-K, Lee BY, Yang K-H (2014) Carbonation characteristics of alkali-activated blast-furnace slag mortar. Adv Mater Sci Eng. https://doi.org/10.1155/2014/326458

    Article  Google Scholar 

  41. MacKenzie KJD, Meinhold RH, Sherriffb BL, Xub Z (1993) 27AIand 25Mg solid-state magic-angle spinning nuclear magnetic resonance study of hydrotalcite and its thermal decomposition sequence. J Mater Chem 3:1263–1269. https://doi.org/10.1039/JM9930301263

    Article  Google Scholar 

  42. Cai J, Xiaopeng L, Jiawei T, Brecht V (2020) Thermal and compressive behaviors of fly ash and metakaolin-based geopolymer. J Build Eng 30:101307. https://doi.org/10.1016/j.jobe.2020.101307

    Article  Google Scholar 

  43. Sun Z, Vollpracht A (2018) Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag. Cem Concr Res 103:110–122. https://doi.org/10.1016/j.cemconres.2017.10.004

    Article  Google Scholar 

  44. Yao X, Zhang Z, Zhu H, Chen Y (2009) Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry. Thermochim Acta 493:49–54. https://doi.org/10.1016/j.tca.2009.04.002

    Article  Google Scholar 

  45. Zhang Z, Hao W, Yingcan Z, Andrew R, Provis JL, Bullen F (2014) Using fly ash to partially substitute metakaolin in geopolymer synthesis. Appl Clay Sci 88–89:194–201. https://doi.org/10.1016/j.clay.2013.12.025

    Article  Google Scholar 

  46. Bernal SA, Provis JL, Volker R, Mejia de Gutierrez R (2011) Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem Concr Compos 33:46–54. https://doi.org/10.1016/j.cemconcomp.2010.09.004

    Article  Google Scholar 

  47. Chithiraputhiran S, Narayanan N (2013) Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends. Constr Build Mater 45:233–242. https://doi.org/10.1016/j.conbuildmat.2013.03.061

    Article  Google Scholar 

  48. Lei L, Li R, Fuddin A (2020) Influence of maltodextrin retarder on the hydration kinetics and mechanical properties of Portland cement. Cem Concr Compos 114:103774. https://doi.org/10.1016/j.cemconcomp.2020.103774

    Article  Google Scholar 

  49. Kochova K, Schollbach K, Gauvin F, Brouwers HJH (2017) Effect of saccharides on the hydration of ordinary Portland cement. Constr Build Mater 150:268–275. https://doi.org/10.1016/j.conbuildmat.2017.05.149

    Article  Google Scholar 

  50. Schneider N, Stephan D (2016) The effect of d-gluconic acid as a retarder of ground granulated blast-furnace slag pastes. Constr Build Mater 123:99–105. https://doi.org/10.1016/j.conbuildmat.2016.06.127

    Article  Google Scholar 

  51. Chen L, Wang Z, Wang Y, Feng J (2016) Preparation and properties of alkali activated metakaolin-based geopolymer. Materials 9(9):767. https://doi.org/10.3390/ma9090767

    Article  Google Scholar 

  52. Palmero P, Formia A, Antonaci P, Brini S, Tulliani JM (2015) Geopolymer technology for application-oriented dense and lightened materials. Elaboration and characterization. Ceram Int 41(10):12967–12979. https://doi.org/10.1016/j.ceramint.2015.06.140

    Article  Google Scholar 

  53. He P et al (2016) Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceram Int 42(13):14416–14422. https://doi.org/10.1016/j.ceramint.2016.06.033

    Article  Google Scholar 

  54. Duxson P, Provis JL, Lukey GC, Separovic F, van Deventer JSJ (2005) Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir 21(7):3028–3036. https://doi.org/10.1021/la047336x

    Article  Google Scholar 

  55. Wan Q, Rao F, Song S, Garcia RE, Estrella RM, Patino CL, Zhang Y (2017) Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem Concr Compos 79:45–52. https://doi.org/10.1016/j.cemconcomp.2017.01.014

    Article  Google Scholar 

  56. Kuenzel C, Neville TP, Donatello S, Vandeperre L, Boccaccini AR, Cheeseman CR (2013) Influence of metakaolin characteristics on the mechanical properties of geopolymers. Appl Clay Sci 83–84:308–314. https://doi.org/10.1016/j.clay.2013.08.023

    Article  Google Scholar 

  57. Bonk F, Schneider J, Cincotto MA, Panepucci H (2003) Characterization by multinuclear high-resolution NMR of hydration products in activated blast furnace slag pastes. J Am Ceram Soc 86:1712–1719. https://doi.org/10.1111/j.1151-2916.2003.tb03545.x

    Article  Google Scholar 

  58. Myers RJ, Bernal SA, Nicolas RS, Provis JL (2013) Generalized structural description of calcium−sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir. https://doi.org/10.1021/la4000473

    Article  Google Scholar 

  59. Schilling PJ, Butler LG, Roy A, Eaton HC (1994) 29Si and 27Al MAS-NMR of NaOH-activated blast-furnace slag. J Am Ceram Soc 77(9):2363–2368. https://doi.org/10.1111/j.1151-2916.1994.tb04606.x

    Article  Google Scholar 

  60. Schneider J, Cincotto MA, Panepucci H (2001) 29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes. Cem Concr Res 31(7):993–1001. https://doi.org/10.1016/S0008-8846(01)00530-0

    Article  Google Scholar 

  61. Wang SD, Scrivener KL (2003) 29Si and 27Al NMR study of alkali-activated slag. Cem Concr Res 33(5):769–774. https://doi.org/10.1016/S0008-8846(02)01044-X

    Article  Google Scholar 

  62. Hilbig H, Buchwald A (2006) The effect of activator concentration on reaction degree and structure formation of alkali-activated ground granulated blast furnace slag. J Mater Sci 41(19):6488–6491. https://doi.org/10.1007/s10853-006-0755-7

    Article  Google Scholar 

  63. Albidah A, Alghannam M, Abbas H, Almusallam T, Al-Salloum Y (2021) Characteristics of metakaolin-based geopolymer concrete for different mix design parameters. J Mater Res Technol 10:84–98. https://doi.org/10.1016/j.jmrt.2020.11.104

    Article  Google Scholar 

  64. Haha MB, Lothenbach B, Le Saout G, Winnefeld F (2011) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: effect of MgO. Cem Concr Res 41(9):955–963. https://doi.org/10.1016/j.cemconres.2011.05.002

    Article  Google Scholar 

  65. Bilim C, Atiş CD, Tanyildizi H, Karahan O (2009) Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv Eng Softw 40(5):334–340. https://doi.org/10.1016/j.advengsoft.2008.05.005

    Article  MATH  Google Scholar 

  66. Bílek V, Kalina L, Novotný R, Tkacz J, Pařízek L (2016) Some issues of shrinkage-reducing admixtures application in alkali-activated slag systems. Materials. https://doi.org/10.3390/ma9060462

    Article  Google Scholar 

  67. Duxson P, Lukey GC, Separovic F, van Deventer JSJ (2005) Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind Eng Chem Res 44(4):832–839. https://doi.org/10.1021/ie0494216

    Article  Google Scholar 

  68. Fernández-Jiménez A, Palomo JG, Puertas F (1999) Alkali-activated slag mortars mechanical strength behaviour. Cem Concr Res 29:1313–1321. https://doi.org/10.1016/S0008-8846(99)00154-4

    Article  Google Scholar 

  69. Gasca-Tirado JR et al (2019) Porous geopolymer as a possible template for a phase change material. Mater Chem Phys 236:121715. https://doi.org/10.1016/j.matchemphys.2019.121785

    Article  Google Scholar 

  70. Mabille (2013) Fragmentation of emulsions in a simple shear stress flow. PhD, University of Bordeaux, France

  71. Marcus Y (2010) Surface tension of aqueous electrolytes and ions. J Chem Eng Data 55(9):3641–3644. https://doi.org/10.1021/je1002175

    Article  Google Scholar 

  72. Ramsden W (1904) Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).—preliminary account. Proc R Soc London 72:477–48

    Google Scholar 

  73. Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KS (2014) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, London

    Google Scholar 

  74. Stephant S (2015) Etude de l’influence de l’hydratation de laitiers sur les propriétés de transfert gazeux dans les matériaux cimentaires. PhD thesis (in French), Bourgogne University

  75. Tadros TF (2013) Emulsion formation, stability, and rheology. In: Tadros TF (ed) Emulsion formation and stability. Wiley, Germany, pp 1–75

    Chapter  Google Scholar 

  76. Thommes M, Kaneko K, Neimark AV, Olivier JP, Reinoso F-R, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. IUPAC Technical Report, DE GRUYTER

  77. Yamaji A, Masuda F (2005) Improvements in graphical representation of fabric data, showing the influence of aspect ratios of grains on their orientations. J Sediment Res 75(3):514–519. https://doi.org/10.2110/jsr.2005.040

    Article  Google Scholar 

Download references

Acknowledgements

This project has received technical support from: Renaud Podor working at the Institut de Chimie Séparative de Marcoule, UMR 5257 CEA-CNRS-UM2-ENSCM, Site de Marcoule, BP17171, F-30207 Bagnols sur Cèze Cedex, France for Environmental Scanning Electron Microscopy observations. Bertrand Revel working at the University of Lille for solid-state NMR measurements.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine A. Davy.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Supplementary file2 (DOCX 1772 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reeb, C., Davy, C.A., De Campos, M. et al. How are alkali-activated materials impacted by incorporating low viscosity organic liquids?. Mater Struct 56, 11 (2023). https://doi.org/10.1617/s11527-022-02089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-02089-2

Keywords

Navigation